
IAD

FUNDING PROJECT NO. IT665702D625

TECOM PROJECT (TRMS) NO. 7-CO-RDO-EP1-004

TEST ACTIVITY REPORT NO. USAEPG-FR-1263 -

TEST SPONSOR: US ARMY TEST AND
EVALUATION COMMAND

Lfl
I")

METHODOLOGY INVESTIGATION

FINAL REPORT

PROGRAM FLOW ANALYZER

VOLUME II

BY
LESLIE F. CLAUDIO

AUGUST 1984 0 ...

(XU0 3 0 1Oqbo".....
cs DTIC

LiJ DISTRIBUTION UNLIMITED E

NC' E I

US ARMY ELECTRONIC PROVING GROUND
Fort Huachuca, Arizona 85613-7110

84 09 • o

APPENDIX E

PFA A-LEVEL SPECIFICATION

E-1

b

"PROGRAM FLOW ANALYZER

A-LEVEL SPECIFICATION

(REVISED)

Accession For

DTIC TAB3

Ui~nnoufl•d

J Ji st ri j It i n/_____-

Availability Codes

A-- Avail and/or

Dist Special

Icop,,~

JANUARY 1984

USAEPG

TABLE OF CONTENTS

Paragraph Page

2. Scope . ocu.ents . 1
2. Applicable Documents
2.1 Government Documents . 13. Req ui4 r ren t s 13.1 System Definition. .* 0 ..00. 0... a............ 0
3.1.1 PFA General Description . . * 0 0 . *. 1
3.1.2 Systen/Interface Diagram 2
3.1.2.1 External Interface .. 2
3.1.2.2 Internal Interface . 2
3.1.2.2.1 Software Standards File. 2
3.1.2.2.2 Master File. 2
3.1.2.2.3 User Files . 3
3.1.2.3 Host Operating System. 3
3.1.3 Government Furnished Property (Target Hardware) 3
3.1.4 Operational and Organizational Concepts 3
3.2 Characteristics . 3
3.2.1 Performance Characteristics 3
3.2.1.1 Program Structure Analysis 3
3.2.1.2 Data Flow Analysis. 4
3.2.1.3 Finite State Analysis 5
3.2.1.4 Error Analysis 5

-- 3.2.1.5 Program Logic Analysis. 5
3.2.1.6 Software Quality Analysis 5
3.2.1.7 Software Change Analysis. 6
3.2.1.8 Documentation Development and Review.
3.2.2 Physical Characteristics. 7
3.2.3 Reliability 7
3.2.4 Maintainability ... 8
3.2.5 Transportability. ... 9
3.3 Design and Construction 9
3.3.1 Workmanship 9
3.3.2 Human Performance/Human Engineering 9
3.4 Documentation 9
3.4.1 Specifications. 9
3.4.2 Supporting Operational Doc,....ntation. 93.5 Logistics 10

3.5.1 Facilities and Facility Equipment 10
3.6 Personnel and Training 0 10
3.6.1 Personnel0 0 *. 10
3.6.2 Training.0 . &. 10

3.7 Functional Area Characteristics 10
3.7.1 Encoding Function . 10
3.7.1.1 Processing. 10
3.7.1.2 Outputs .11

Paragraph Page

3.7.2 File Management Function 11
3.7.2.1 Processing 11
3.7.2.2 Outputs 11
3.7.3 Analysis and Reporting Function. 11
3.7.3.1 Processing. 12
3.7.3.2 Outputs 12
4. Quality Assurance Provisions 12
4.1 General 12
4.1.1 Responsibility for Tess................. . . 13
4.1.2 Special Tests and Examinations 13
4.1.2.1 Unit- and Module-Level Testing 13
4.1.2.2 Software Integration Testing 13
4.1.2.3 System-Level Testing 13
4.2 Quality Conformance Inspections 14
5. Preparation for Delivery 19

TABLES

Table I Verification Cross Reference Index 15

i1

1 SCOPE

"-,This specification establishes the performance, design, development, and
test requirements for the Program Flow Analyzer (PFA) system. PFA is a
software analysis system that shall interpret and translate source language
programs into attributes which c; icterize the design of the programs. The
attributes shall then be processeo to provide an analysis of the program based
on selected PFA requirements. This specification provides the user
requirements for a software analysis tcol to support the software development
process. Many of these requirements have not matured to the point of
practical application. This document should serve as a living document to
evolve as software engineering matures.

2. APPLICABLE DOOUMENTS

The following documents form a part of this specification to the extent
hereir. specified. In the event of a conflict between the documents referenced
herein and the contents of this specification, the contents of this specifica-
tion shall be considered as superseding eequirements.

2.1 Geverrment Documents

Standards

Military
MIL-STD-490 Military Standards Specification

Practices, 30 October 1968

MIL-STD-1679 Military Standard Weapon System

Software Development, I December 1978

Other Publications

USAEPG Program Flow Analyzer Trade-Off Analysis

3. REQUIREMENTS

3.1 System Definition

The PFA is a software system which interprets and translates source langu-
age programs into data files which represent the design of the software
program being analyzed.

3.1.1 PFA General Description

The PFA is a tool used for the analysis of a software program in order to
identify software quality, program structure, and proram maintainability.

.-• The design of the PFA shall include the following functitnal areas:

1

* a. Program Structure Analysis

b. Data Flow Analysis

c. Finite State Analysis

d. Error Analysis

e. Program Logic Analysis

f. Software Quality Analysis

g. Software Change Analysis

h. Documentation Development and Review

3.1.2 System/Interface

The following paragraphs identify and describe the external and internal
interfaces for the PFA system.

3.1.2.1 External Interface

File management and some segments of analysis and reporting use inter-
~ aLtive commands. Files from previous runs shall be archived and used for com-

parison with files from new runs. The user shall supply, on a file, the
source data to be analyzed. All functions shall generate repcrts to be
printed.

3.1.2.2 Internal Interface
q

All functions of the system shall be independent and shall interface
through the data files. The following files shall be used for functional
interface.

3.1.2.2.1 Software Standards File

This file is created by the user and is used by analysis and reporting.
The information contained in the software standards file shall specify
standards for comparison to the software under test by software quality
analysis.

3.1.2.2.2 Master File

The master file contains all information on the structure of the system
being analyzed. It is created by the encoding function, maintained by file

- management, and used by the analysis and reporting function. The master file
• . may be archived, and archived master files may serve as inputs to the analysis

and reporting function.

2

3.1.2.2.3 User Files

User files (e.g., Selection File) are used for additional, user-defined
requirements in analysis and reporting.

3.1.2.3 Host Operating System

The host computer shall be driven by the support software operating system
peculiar to the machine being used for PFA. The operating system with all its
utility routines (i.e., file manager, editor, math/statistical package, tape
input/output (I/0) handlers, disk I/O handlers, and language com.piler) shall
be available in order that a request for services can be provided through the
use of operating system directives. The host computer shall also be capabie
of backing up the PFA system files to tape.

3.1.3 Government Furnished Property (Target Hardware)

Initial implementation of the PFA shall be on the DEC-10 and VAX 11/780
systems at Fort Huachuca. Delivered software should be portable to other com-
puters.

3.1.4 Operational and Organizational Concepts

The mission of PFA in relation to other systems under development is to
A assess the quality of the software system under development and to provide

information for testing that software system.

Anticipated use of PFA will be at testing installations to include Post
Deployment Software Support Centers (PDSSC's). PFA shall also be useable by
devel opers.

3.2 Characteristics

3.2.1 Performance Characteristics

PFA shall read a representation of the system to be analyzed, maintain a
master data base file containiny parameters of that system, perform analysis,
and generate reports on those parameters.

3.2.1.1 -- Program Structure Analysis

Program structure analysis should consist of several subfunctions:

a. Subroutine Call Structure Chart. A subroutine call structure chart
shall snow the subroutire call hierarchy, from the highest level routine to

- lowest level routine. External and recursive routines should also be iden-
-" tified.

3

b. HIPO Charts. A HIPO chart shall be generated for each module in the
system being analyzed. The HIPO chart should contain the name of the module,
a list of variables input to each program step, a list of subroutines called
by each program step, a short description of each program step, and a list of
variables output from each program step.

c. Execution Flow Diagram. An execution flow diagram shall provide a
graphic representation of module control coupling and execution flow within
each module of the software being analyzed. This graphic representation
should be in the form of a bubble chart. These graphics should be machine
generated and should show the control structure of the software unit under
test.

d. Path Analysis. Path analysis shall look at all paths based on a
node-branch diagram for the program segment and provide a list of all paths
and path quantifiers, i.e., times, statement counts, and shortest or longest
path. The path analysis shall also identify most common path lengths used,
loop identification which describes the depth of nesting used, and path jumps
into and out of loops. Path analysis shall also find the critical paths
through the module.

3.2.1.2 Data Flow Analysis.

Data flow analysis should consist o, several subfunctions which performi
the following analysis and provide the appropriate reports: -

a. Data Flow Diagram. A data flow diagram shall provide graphic repre-
sentation of data flow between modules of the software being analyzed. This
graphic representation should be in the form of a bubble chart with variables
itemized on connecting lines shoding directional data flow. These graphics
should be machine generated using a plotter. ,

b. Module Coupling Analysis. Module coupling is a metric that shall
provide information on the design of the target code. Module coupling is a
metric for defining module interdependence for the sharing of control and
data. Module coupling is based on intermodule control and data exchange. The
control and data coupling between each module and every other module can be
established and a numeric value can be assigned for each module-to-module
relationship. The metric can then be used to report the coupling strength of
the system under test.

c. Module Strength Analysis. Module strength (also known as cohesion) is
another metric for defining module interdependence and functional design that
shall provide information on the design 'of the target code. When the
intramodule strength has been determined, a numeric value can be assigned.

d. Program Stability Analysis. Module coupling and module strength shall
be used to calculate program stability, a software metric that describes the
dependency of each module and its relationship with all other program modules.
The program stability metric will report the probability for which a change in
module X will have an effect in module Y.

4

2I. .,

e. Module-Level Data Flow Analysis. Module-level data flow analysis
shall show the data flow between each step of execution in each module. This

should be a graphic presentation similar to the data flow diagram in item a.

f. Critical Variable Analysis. A critical variable analysis shall be

used to find which variables are used on the critical path of the module and
ranks variables as to their criticality within the module.

g. Global Cross-Reference. A global cross-reference shall list all
global variables used in the system, alphabetically and by the module in which
they are used.

3.2.1.3 Finite State Analysis

Finite-state modeling should be used for locating deadlocked code, -

infinite loops, unexpected halts, and areas with oscillating states (cyclic
actions or processing with transient intermediate states).

3.2.1.4 Error Analysis

Error analysis should determine (see paragraph 3.2.1.2) the effects of

errors in data flowing between the modules. This should give a comprehensive
picture of how and where the system being analyzed may fail.

3.2.1.5 Program Logic Analysis -*

Program logic analysis should consist of three subfunctions:

a. Simulation/Modeling Inputs Generation. The PFA shall be capable of
generating a simplified module structure by combining units and paths within
units. The structure shall be processable to produce input to a simulation
language. The structure shall be capable of tracking input/output operations
for each module and the variables which are affected by the decisions in the
model design.

b. Interface to Commercially Available Tools. Commercially available
tools should be evaluated to determine what analysis reports are available and
what their inherent capabilities are in order to enhance the PFA system with
their attributes or use their outputs to complement the PFA analysis reports.
Interface programs should then be designed to extract and process information
generated by the commercially available tools.

c. Symbolic Execution Analysis. Dynamic symbolic execution shall simu-
late the execution of each module and attempt to execute all possible paths
through each module. This should provide an exhaustive test of each module.

3.2.1.6 Software Quality Analysis

The software quality analysis (SQA) function should consist of these sub-
functions:

5

a. Software Profile. The software profile subfunction shall be capable
of accepting user-defined software quality standards for the purpose of com-
paring the current program with thes;e standards (e.g., MIL-STD-1679).

The software profile subfunction should include the following quantifiable
data provided by the encoder function:

1. Number of documentation comiients in the information prologue of
module.

2. Number of documentation comments embedded in Lhe body of the
module.

3. Number of lines ir the module containing more than one executable

statement.

4. Number of executable statements per procedure.

5. Number of declaration (nonexecutable, non-comment) statements per
module.

6. Number of control statements per module.

These metrics and others, either alone or in calculations, shall be used
to determine whether or not a particular module meets the standards set by the
user. The SQA shall also provide a summary of standards met and violated by
the modules in the system being analyzed.

b. Complexity Analysis. Complexity measures shall be used to determine
how simple or complicated a module is, either on an absolute scale or relative
to other modules. Complexity analysis should be implemented to determine as
many different complexity measures for each module analyzed as possible.

c. Quality Metrics Analysis. Quality metrics other than complexity
measures shall be used to provide qualitative information about each module in
the system being analyzed. These metrics may include line and comment counts
as used in the software profile report, Halstead's measures, or other metrics.

3.2.1.7 Software Chanae Analysis

Software change analysis shall reflect the maturity and reliability of the
software under analysis and should consist of these subfunctions:

a. Patch Analysis. Patch analysis shall include a comparison of master
files of different program versions and shall identify where structure and
data have changed and shall report the percent of change.

b. System Configuration Change Analysis. A system configuration audit
shall be produced by a comparison of the system structure for all versions de-
veloped during the life cycle of the system.

6

-- :

3.2.1.8 Documentation Development and Review

Documentation development and review should consist of these subfunctions:

a. Comment Processing. Comment processing shall read program source code -
containing specifically forirated comments. These conments will supply
information to be used to automate documentation.

b. Program Design Language Interface. Program design language (PDL)-to-
PFA interface programs should extract data from PDL reports and databases.
These data will be compared to data contained in a PFA master file for the
code to determine if the specification is consistent with the code and to
evaluate the code and specifications for correctness and completEness.

c. User-Defined Report Generator. A user-defined report generator should
be used to generate custom reports defined by the user. The report generator
shall be able to read the master file or any other file used for PFA inter-
face. A capability of reading report and data files g.nerated by other com-
mercially available programs should also be provided.

3.2.2 Physical Characteristics

Not applicable.

3.2.3 Reliability

PFA shall conform to the following limits on frequency and severity of
software arrors taken from 5.10.3.1 and 5.8.5.2 of MIL-STD-1679:

a. The number of unresolved software errors (excluding documentation
errors) shall not exceed the following:

Severity Limits

Priority 1 and 2 (high) Zero
Priority 3 (medium) One per 70K of machine instruction

words or fraction thereof.

Priority 4 and 5 (low) One per 35K of machine instruction
words or fraction thereof.

b. Intermittent errors shall be included in the count of software errors
and receive no special consideration.

c. The number of unresolved technical errors in all of the deliverable
documentation shall not exceed the sum of three, plus one for every 25K of

7

machine instructions or fraction thereof. For example, for a program having
0. 300K machine instructions: 3 + 12 = 15 allowable documentation errors.

d. All software errors discovered during the software quality test shall
be documented.

e. The following is an explanation of the levels of software error
severity:

Priority 1 - An error which prevents the accomplishment of an oper-
ational or mission essential function in accordance with official requirements
(e.g., causes a program stop), which interferes with an operator or mission
essential function, or which jeopardizes personnel safety.

Priority 2 - An error which adversely affects the accomplishment of
an operational or mission essential function in accordance with official re-
quirements ro as to degrade performance and for which no alternative work-
around solution exists; or which interferes with an operator to the extent
that the operator adversely affects the accomplishment of an operational or
mission essential function so as to degrade performance and for which no

P alternative work-around solution exists. (Reloading or restarting the program
is not an acceptable work-around solution.)

Priority 3 - An error which adversely affects the accomplishment of
an operational or mission essential function in accordance with official re-
quirements so as to degrade performance and for which there is a reasonable
alternative work-around solution; or which interferes with an operator to the
extent that the operator adversely affects the accomplishment of an oper-
ational or mission essential function so as to degrade performance and for
which there is a redsonable alternative work-around solution. (Reloading or
restarting the program is not an acceptable work-around solution).

Priority 4 - An error which is an operator inconvenience or annoyance
and does not affect a required operational or mission essential function.

Priority 5 - All other errors.

3.2.4 Maintainability

PFA shall be maintained and updated on the basis of new requirements not
outlined in this specification. Each program change shall include a test and
verification phase along with the appropriate documentation changes.
Quantitative estimates shall be given for the following maintenance
considerations:

a. Time and level of technical skill needed to design a functional
module.

b. The number and extent of impacts caused to existing PFA subprograms by
the substitution of a new subprogram for a pre-existent one and by the
integration of an entirely new subprogram into the PFA.

3.2.5 Transportability

The PFA shdll be designed as a general-purpose software tool, capable of
being transported to other computer systems and of being maintained for future
software evaluation requirements of tactical command and control communication
electronic computer systems. The software shall operate on commercially
available hardware and operating system software located at other government
installations.

3.3 Design and Construction

3.3.1 Workmanship

The PFA shall be a software system whose functions are composed of com-

puter programs. The computer programs shall be designed in a modular, hier-
archically structured manner. The design shall provide the flexibility for
transporting the program to other machines and a growth potential for expan-
sion of additional software test capabilities that can accommodate future
tactical computer systems. The coding shall be performed in such a manner as
to ensure that the programs can be easily read, understood, tested, and main-
tained. The program source code listings shall contain sufficient documen-
tation to provide meaningful explanations of the processing performed by each
function. The design of the software shall be implemented in functional
modules which, if modified, will have little to no impact on other modules.

j -_ Each program shall run independently of the others.

3.3.2 Human Performance/Human Engineering

PFA shall have ergonomically optimized display format and shall allow easy
and noncritical recovery from operator input errors.

3.4 Documentation

The following paragraphs describe the required documentation that shall be
delivered with the PFA.

3.4.1 Specifications

Appropriate specifications shall be developed under the guidelines of
1 MIL-STD-1679.

3.4.2 Supporting Operational Documentation

Supporting documentation for the operation of PFA shall include a mainte-
* _ nance manual and user's manual, containing descripLions of the software system
_ • and functional details on control and operations for each subsystem.

p9

3.5 Logistics

3.5.1 Facilities and Facility Equipment

The PFA shall operate on the resources provided by the USAEPG system
control facility.

3.6 Personnel and Training

3.6.1 Personnel

PFA shall require a programmer familiar with the use of the VAX 11/780 VMS
operating system command directives and a working knowledge of the system
editor in an interactive processing mode.

3.6.2 Training

On-the-job training for the operation of PFA shall be handled cn an inter-
active basis on the VAX 11/780 interactive termlial, following guidelines in
the PFA user's manual.

3.7 Functional Area Characteristics

The following paragraphs specify the functional area characteristics re-
quired for each of the PFA functional areas defined in paragraph 3.1.

3.7.1 Encoding Function

The modules of the encoding function shall perform the following sub-
functions:

a. Processing of input data.

b. Error processing and reporting.

c. Master file generation.

d. Listing file generation.

3.7.1.1 Processing

Processing for all subfunctions of the encoding function will be performed
in interactive mode.

! 10

3.7.1.2 Outputs

The encoding function will generate the following outputs:

a. Master file.

b. Program source listing file.

3.7.2 File Management Function

File management shall be performed using the editor and file management
facilities provided by the commercial operating system.

3.7.2.1 Processing

All editing and other processing shall be done in interactive mode.

3.7.2.2 Outputs

File management shall generate the following outputs:

a. Error messages.

b. Updated master file.

c. Subsets of the master file.

3.7.3 Analysis and Reporting Function

The modules for analysis and reporting shall perform the following sub-

functions:

a. Program structure analysis.

b. Data flow analysis

c. Finite state analysis.

d. Error analysis.

e. Software quality analysis.

f. Program logic analysis

g. Software change analysis

h. Documentation development and review

11

3.7.3.1 Processinq

All of the above subnfunctions shall run in interactive mode.

3.7.3.2 Outputs

There shall be at least one report generated for each of the subfunctions
in 3.7.3.

4. QUALITY ASSURANCE PROVISIONS

4.1 General

This section outlines the quality assurance provisions to be followed dur-
ing the design, development, and verification of PFA. The verification of PFA
and its functional subsystems shall be consistent with the phased delivery and
implementation schedules. The paragraphs below outline the tests and the re-
sponsibility for the tests of verification as well as the criteria for quality
conformance inspections.

The verification of the software program shall be accomplished through
system-level testing, unit- and module-level testing, and software integration
testing. A delivery acceptance demonstration, based on the system-level test,
shall be conducted.

Test documentation relating to quality assurance (QA) shall be generated
and maintained. Documentation shall be informal in nature, coiislsting of
memos that document specific QA monitors' meetings, program design review,
coding (implementation), walkthroughs, etc. This documentation shall be made
available on request. QA information saved/stored shall include, as a
minimum, the following:

a. Software problems--system integration

b. Software problems--module integration

c. Operations, user manual discrepancies

d. Project status/accountability data

The user manual for this software shall also be subject to review and ap-
proval.

Acceptance of the software specification delivery shall be based upon the
satisfactory demonstration of its performance and reliability. The delivery
acceptance demonstration of the system program shall consist of system-level
testing designed to verify that the overall requirements of the system and its

12

* interface with its subsystems are met. Records on all software problems en-
countered during testings and on data relating to the resolution and repair of
these problems shall be mainttained. The system delivery shall not be con-
sidered accepted until all reported discrepancies have been corrected.

4.1.1 Responsibility for Tetts

Unless otherwise specified in the contract or task order, the supplier
shall be responsible for the performance of all inspection requirements as
specified herein. Except as otherwise specified, the supplier may utilize his
own facilities or any commercial computer facility acceptable to the govern-
ment. The government reserves the right to perform any of the inspections set
forth in the specification where such inspections are deemed necessary to as-
sure that supplies and services conform to prescribed requirements.

4.1.2 Special Tests and Examinations

The following tests shall be performed by the contractor in the verifica-
tion of PFA.

4.1.2.1 Unit- and Module-level Testing

Unit- and module-level testing shall be performed to ensure the cor-
rectness of each program module prior to software integration testing. Each
unit of each module shall be tested independently to verify its compliance
with the appropriate module-level requirements. This testing shall be ac-
complished on an informal basis, using informal test documentation. All test
failures shall be documented upon occurrence. Units and modules shall be re-
tested whenever a software correction is implemented. Complete path testing
shall be made at the u'nit level. Unit-and module-level testing may be done
concurrently with software integration testing.

4.1.2.2 Software Integration Testing

Software integration testing shall be performed to verify the performance
of larger program segments and module interfaces. This testing shall be ac-
complished during the phased integration of the program modules. As each mod-
ule is integrated into the system program, that module's interfaces with the
other integrated modules shall be tested. This testing shall be accomplished
informally using internal software test pjans and procedures. When a test
failure occurs, it shall be documented, and integration testing shall be sus-
pended until the problem is successfully corrected.

4.1.2.3 System-level Testing

The system program shall be tested on the system level to verify that the

13

overall requirements of the system and its subsystems are met. Records small
be maintained crn all software prublems encountered during testing and on the
resolution of these prublems.

4.2 Quality Conformance Inspections

This paragraph presents quality conformance inspection criteria to be ap-
plied during the design, development, and verification of PFA. The quality
conformance inspections shall include reviews of the following categories of
documentation: design documents (specifications), supporting documentation
(operational guide or user manual), program listings (module source code), and
status accountability reports. A System Design Review (SDR) shall be held to
discuss the software requirements as presented in this specification. The de-
livery of both the performance and design specifications shalH be followed by
design reviews. An SOR shall also be held to discuss the functional design as
presented in the program performance specification. A Critical Design Review
(CDR) shall be held to discuss the detailed implementation-level design as
presented in the program design specification. The design review shall be
scheduled approximately three weeks after delivery of each specification. Ad-
ditional interim design reviews may also be scheduled.

A Verification Cross-Reference Index (VCRI) (Table I) shall be used to
provide for the direct identification of each Section 3 requirement and the
associated method for verifying that the requirements has been satisfied. An
N/A in the VCRI paragraph list indicates that there is no verifiable re-
quirement in the Section 3 paragraph.

The quality conformance inspections if the program listings shall include
several separate procedures. First, a review shall be made of the module
listings and the program design specifications to verify that a module listing
exists for each module identified in the program design specifications and to
verify that each module for which a module listings exists was identified in
the program design specification. The listings for each separately assembled
or compiled module shall then be reviewed, using the following criteria:

a. The module shall contain the complete processing for that function or
subfunction, to permit modification of that function/module without requiring
modification of other modules.

b. The module listing shall contain a prologue comment section whizh
identifies the module, the system, the module inputs and outputs, error con-
ditions ard error processing, and a brief description of the module's func-
tion.

c. The module listing shall contain comments to describe the inputs,
processing, and outputs for each routine and subroutine.

d. The program flow within the module listing shall be consistent with
the program flow defined in the program design specification.

Quality conformance inspection shall also include the review of status re-
* ports and monitoring of the status and accountability information throughout

14

4j

t.)

LIJ

-v

07

0u0

aj

CL 41

LW L. EN 4-

oj di. 0. A4T1(
w , L.u 1

>N. 0 %- 4A
I.. C (Ut .V L)0 4

-j 0 0 4 oI - Af
c 4j cu t U1 m . c u" 1

ul 4.-'4 u- LL -

iz - 6

U.. z1 4'
-. L. 39 W -C010

4j ~ ~~ 4j ai W 4 4J1 j U L

L- W . 41 Aj %- 4A 4) > cug

I u % - a -to ul 0 .C 410

E21 Ul 91. -) C) 0L0- &3.f

-. ~ -- to41 C

0~4 41 c CC41 0 41
06 C 4A 0

(%j C14 E1 -~ m) C EA-
4.1C 4a 41 a. U E

cm EA4 4.M 4; EU C; C%; Ul 0l "0 (EU#
= a CU 411

cu c; Z EC3 I---c
if

06 C 4 c 4 4 44 44 4 4

4JJ

44)

4.))

LL.I

LL.

r- D 4J

IA ~LJ

oL fl 0 0A8)
in =n I.
>w - 41 C in-

d) - m) 01 11

to - u E
4J cm - >n ' -00 in4

-j 4-j -j C 'a -j a

4c to 4 -E L. L- c..C

4J 0 -- 4- u ~ - m (L. M)
ea L- C > 0 to >. >44. W

-m LA- 0) J a. Ln 'a 'aCL > -

'a~~~~~~. -L L C a *. . C 0

4~~~~)~ (a L ' L-n 0
'a~ ~~~~~~ 'a -- 0CL4) 41 ~ in - C - C - ~

fa 'a en a. n %0 0- 0o W0 03 'aL) 0j4.
0. CL La. La) 0.

cm 1 -4 r i ic -4 C-j LA wl
fa -C C .)
L- Ow cz c cz z 4-
m0

161.

4J
u

'4)

41

0

w 4

I" "1 4J

41 cm

0 ui L_ a - I - I - - 9

CC

1 L

C ,_

Ls . .

t- 0 6

Cd, 41 441

4.1 fa to a A)

, U9 a.

F_ U3 4- L 4A1.0-L, 4- A 4

E 0 CA 04

It I- C. (,

L_ .a) C m tw L. ,. c u 4-) 0 41 m

-m 0 CL 041(Wa4

La.. C C.. ~CX

""-" 0 .- L O -"

-~~~. L_~.C0 1

SU-.)4- 4 0 C CL 0 4 - ..

w 1-0. -~ 0Y Cj O 0)001E)

--L- - = C . , . i-4 4

': I' * Cm.C U

- 0 ; • 0 0 0 0 L.. c. • • E - -

U) 4. 41 ~ U)- La. 0 ~ Oa i

C-. L 01. 14- A 44 A C A A A. (m41 Z IA

-mm

0•L 0 .,0--101 C.• . -1 .. •' 41•€= •

171
U'!

• . . . -. . • .. - . - o,,.. - " .. '.. . .* ,1

u V

0

4j

4-

0

u wn

U- LnI- I

4.4.J

CC

0c

u(a

mU L C

m -

< - C)4
LI.. 9=1
L4U

in

0 -o

L, (I.) a w
(aa)Ci Ca
- C=**L

Li. 11 ig i-~C 4-14a

L. 013

each phase of the software development effort. As a minimum, the following
status information shall be provided for each module and module subroutine de-
fined in the program design specifications:

a. Coding effort started.

b. Coding effort completed.

c. Module-level testing started.

d. Module-level testing completed.

e. System-level testing started.

f. System-level testing completed.

A record shall also be maintained of all software problems encountered
during testing and of how each was resolved. For each software specification
delivery, a list of the functional capabilities provided in that specification
delivery shall be established and the testing/verification status of each
shall be maintained.

5. PREPARATION FOR DELIVERY

The preparation for the PFA delivery shall include the following steps:

a. Generation of source code listings of all programs being delivered.

b. Generation of a machine readable software source.

c. Updated operational guides, if required. All software deliveries
shall be in accordance with the phased development and implementation schedule
agreed upon.

19

• • - . ÷. - ,.

APPENDIX F

PFA USERS MANUAL

F-i

PROGRAM FLOW ANALYZER

USERS MANUAL

JANUARY 1984

PROGRAM FLOW ANALYZER
USERS MANUAL

TABLE OF CONTENTS

Page

SECTION 1. GENERAL 1
1.1 Purpose of the Users Manual 1

1.2 Project References 1
1.3 Terms and Abbreviations 1
1.4 Security and Privacy 1

SECTION 2. SYSTEM SUMMARY 2
2.1 System Application 2

2.2 System Operation 2
2.3 System Configuration 6
2.4 System Organization 6

* 2.4.1 Encoder (AUTOxxxx) 6
2.4.2 Comment Processor (COMPRO) 6
2.4.3 Structure, Timing, Analysis, Modeling 6

Program (STAMP)
2.4.4 Software Profile Program (SOFTPRO) 6
2.4.5 System Structure Comparator (SYSTRUCT) 6
2.4.6 Patch Analysis Program (PATCHANA) 6
2.5 Performance 6
2,6 Data Bases 8
2.7 General Description of Inputs, Processing, Outputs 8
2.7.1 Inputs 8
2.7.2 Processing 10
2.7.3 Outputs 11

SECTION 3. STAFF FUNCTIONS RELATED TO TECHNICAL OFERATIONS 13
3.1 Initiation Procedures 13
3.2 Input Requirements 13
3.2.1 Source File 13
3.2.2 Standards File 13
3.2.3 Master File 16
3.2.4 Selection File 18
3.2.5 Terminal Inputs 18
3.3 Program Operations 19
3.3.1 COMPRO 19
3.3.2 STAMP 25
3.3.3 SOFTPRO 35
3.3.4 SYSTRUCT 43
3.3.5 PATCHANA 44

p

LIST OF FIGURES

Figure Page

2-1 Use of PFA in the Acquisition Life Cycle 3
2-2 PFA Use in Support of Software Change Control 4

and Impleementdtion
2-3 PFA End User Activities 5
2-4 Structure of the PFA System 7
3-1 A Sample OFA-Commented Source Program 14
3-2 Standards File 15
3-3 Master File 17
3-4 COMPRO Data Flow 20
3-5 Master File Output by COMPRO 24
3-6 STAMP Data Flow 26
3-7 STAMP External Procedures Chart 29
3-8 STAMP Structure Chart 30

* 3-9 STAMP Function List 31
. 3-10 STAMP Module List 33

3-11 STAMP HIPO Chart 34
3-12 SOFTPRO Data Flow 36
3-13 SOFTPRO Standards Violations Details Report 38

__ 3-14 SOFFPRO Standards Violations Summary Report 39
S @ 3-15 SOFTPRO Quality Values 40

3-16 SYSTRUCT Data Flow 42
3-17 SYSTRUCT Report 45
3-18 PATCHANA Data Flow 46
3-19 PATCHANA Report 48

"LIST OF TABLES

Table

2-I Inputs and Outputs of PFA Programs 9

TABLE OF CONTENTS (CONTINUED)

Page

3.4 Utilization of System Outputs 49
3.4.1 STAMP Reports 49
3.4.2 SOFTPRO Reports 51
3.4.3 SYSTRUCT Report 51
3.4.4 PATCHANA Report 51

APPENDICES

A Terms and Abbreviations A-1

B Master File and Standards File Descriptions B-1

i

I -

S~iii

SECTION 1. GENERAL

1.1 Purpose of the Users Manual. The objective of the Users Manual for the
Program Flow Analyzer (PFA) system, TECOM Project Numoer 7-CO-RDO-EPI-004, is to
provide non-ADP personnel with the information necessary to use the PFA system
effectively.

This manual reflects the current implementation of the PFA system on the VAX
computer. The capabilities described in this document represent a subset of the
planned system as defined in the PFA A-level specification.

1.2 Project References. PFA is a software analysis system. It is made up of
various programs which identify software quality, structure, modification, and
features which aid or interfere with program maintainability and reliability.

PFA is sponsored by the US Amy Electronic Proving Ground (USAEPG) at Fort
Huachuca, Arizona.

The following documents are applicable:

a. USAEPG, Method(logy Investigation Proposal--Program Flow Analyzer, March
1979.

b. USAEPG, Program Flow Analyzer A-level Specification, 4 April 1980.

c. USAEPG, Program Flow Analyzer Detailed Work Plan, 30 October 1982.

d. Leslie Claudio, Methodology Investigation Final Report--Program Flow An-
alyzer, 30 October 1982.

e. USAEPG, PLRS DT-II Final Report, December 1981.

f. Department of Defense, DOD-STD-7935.1-S, Automated Data Systems Doc-
umentation Standards, 13 September 1977.

g. Department of Defense (Navy), MIL-STD-1679, Weapon System Software De-
velopment, 1 December 1978.

1.3 Terms and Abbreviations. Terms, abbreviations, acronyms, and definitions
are given in appendix A.

1.4 Security and Privacy. The PFA system is unclassified and is currently set
up to identify all output as unclassified. To process classified information
the program must be modified.

t 1

-* SECTION 2. SYSTEM SUMMARY

2.1 System Application. PFA is a software tool for automating software anal-
yses which are normally performed manually. These analyses are time consuming
and are often omiitted.

PFA provides system structure, module structure, software quality assess-
ment, and system-level and module-level comparison of versions of software. PFA
can also be used to generate system documentation.

Document review of code and design-level specifications, software quality
metrics, and comparison of different versions of software are normally performed
manually. PFA generates reports that are comparable to design specifications;
this reduces the effort needed to trace from code to design specifications. PFA
computes and compares software quality metrics to user-selected software quality
standards, thereby automating the software quality assessment. PFA compares two
versions of software, in an overall comparison and then a comparison of selected
modules, and generates reports which clearly locate changes.

2.2 System Operation. The PFA system can be used by the developer, the
independent verification and validation (V&V) contractor, the independent de-
velopment test and evaluation (IDT&E) activity, the independent evaluation
activity, and the post-deployment software support (POSS) activity. Figure 2-1
shows the relationship of the various users of PFA within the acquisition life
cycle. The shaded areas show when PFA can be used and who might use it.

PFA reduces the effort required to document a system. Using COMPRO or a
full capability encoder with STAMP provides the developer with a procedure call
structure chart and HIPO charts for each procedure. These can be used to create
or update program documentation CPCIs.

PFA reduces the effort for documentation reviews. The system-specific en-
coder and the SYAMP program provide the Independent V&V and development tester
with procedure call structure charts and HIPO charts which are comparable with
the developer's program documentation CPCIs. Lists of procedures called which
are external to the developer's software, a list of the highest level procedures
to compare against the functions described in function specifications, and an
alphabetical directory of all procedures supplied by the developer are also
provided.

PFA reduces the effort required to check software against standards and
software quality metrics. The system-specific encoder and the SOFTPRO program
provide the developer and tester with a list of procedures, pointing out the de-
viations from software standards and acceptable software quality measures for
each procedure.

PFA reduces the effort required to monitor changes between old and new
versions of software. The system-specific encoder and the SYSTRUCT and PATCHANA
programs provide the developer, configuration controller, and testers with an
audit of changes between two versions of the same software from the system level
and the procedure level. Figure 2-2 shows an assignment of configuration
"control responsibilities during various periods in the acquisition cycle.
Figure 2-3 shows the relationship of the various user activities to the
individual programs of the PFA system.

2

(AI

o -I

4n'I

a--

'4-

00

(A (A 4-)

(2 I> CA
m .6.

41I Q 1IA(
c (U *a W w a c

0 , C - a - 0 L

cr aJj041>

4-1 CL

LLL1'C. >I

0

u . L) u) u.)-4
a. V) C.) V.) W.) (LC

(A E E
4) 4

C.) E.

a- Lij cc cc 0 1: c

:3 4) 0

U) 4n1C

-- (D cmme

ea 4)0)ci3 0 C-
t-~ EUL m u .)f 4 6
cn L0) 0 CLc

LU~e 0)UCO-

- -. - 0- C CL

Le) 4) L)

a EU

CA I-C CC 4

LA.)
(41

EU-

C:. 0. .) 4

(D I ~ E

r- C-

L C C C .

co (71

aii
cm C

0~ c1

W A4 U4j cma4 o
Cif s- CCt r CCA

u -1 t U 4 mt ~4j r3 r a
4C -CCE . _0:1 :x '

to 4j > "o41ý- > " c- "aaI-

C CU-43' ..- 0 i 4)d -C~ do . 4

C04 a c 41 41
0.C 0. (c CtoC) Coza

to .6- c FE 434S-&E t S--E

to04 4 C.cg = M

cm&)4 043U 4J c.0 .Om

434) 4 34 LD 41.1d 414 S-I*- (%.-. 4-4vc
4-P IA > 3f 43 c >L(3 r_ > u)(

ac >,4CC (U c 0. 0 ci uC..;L 0.0 43)U

V) cm U) CDC U 3 k

U.) Li.) Li. aLIi 43

4-a
.I-

4-3

U-U

0 >-

Cl

clJ

LLL.

0. CD
CCC

4 4J tz 0j3

.9 A C i C

4J~0 U 4- 4-'jd

-ý C)c

a n:4. ea 4- 0'
4- 0C -C C) ..

C.4-)

e*5

2.3 System Configuration. PFA is currently implemented on a DEC VAX/VMS sys-
tem, model 11/780, and requires a dis. and a 9-track tape drive.

2.4 System Organization. The flow of data through the system is shown in
figure 2-4. A general description of the organization of the PFA system is
provided below.

2.4.1 Encoder (AUTOxxxx). The encoder is a front-end program to the PFA sys-
tem, customized for each application to accommodate the specific machine/lan-
guage combination of the software system being analyzed, which translates com-
puter/software/language specific programs into a representation which is stored
in a data base called the master file. This master file is then read by other
PFA programs that generate reports.

2.4.2 Comment Processor (COMPRO). COMPRO extracts and processes comments for
creating documentation. COMPRO reads program source code files which contain
comments in , ;pecific format and creates a master file which can be processed
by other PFA programs to generate reports used for program documentation. PFA
programs are commented in this manner to provide automated HIPO and structure
charts for the PFA system. A source listing of the input is also provided.

2.4.3 Structure, Timing, Analysis, Modeling Program (STAMP). STAMP performs
program structure analysis. The STAMP program reads the master file and
generates reports on the overall system under analysis to aid in modeling that
system and to orovide information about the structure of that system.

S 2.4.4 Software Profile Program (SOFTPRO). SOFTPRO performs software quality
analysis. SOFTPRO reads the master file and a software standards file and
generates two reports on software standards violations.

2.4.5 System Structure Comparator (SYSTRUCT). SYSTRUCT performs analysis of
system configuration changes. SYSTRUCT reads two master files representing dif-
ferent versions of the software system under analysis. SYSTRUCT generates a re-
port on system-level changes in the analyzed system.

2.4.6 Patch Analysis Program (PATCHANA). PATCHANA performs software patch
(sou'ce code change) analysis. PATCHANA reads two master files or subsets of
master files (work files) representing two versions of the software being
analyzed. Selection can be made interactively or via the selection file, w:;ich
contains a list of modules to be compared. The report lists the path segment
structure for both versions side by side and indicates (with codes and arrows)
the location of differences and what was changed for each version.

2.5 Performance. PFA supports various software evaluation activities by re-
ducing the effort required to perform those activities manually or by making
performance of those activities feasible, given constraints on time and effort.
PFA reduces effort by presenting its output in a format which is comparable to
the CPCI for the program under analysis.

To process a master file containing about 200 modules, the STAMP program
- takes one hour, SOFTPRO takes about 15 minutes, and SYSTRUCT takes 30 minutes.

PATCHANA takes about two minutes per module to be compared if full master files
are used, less if work files are used.

6

I-:

LALU

-L LJ F Lai

.LL. .C

Dl< = I .- J C - C

-3-

LL 0- -i
CD .- 4J I--

a-U
I--

S.- I.- 1= - a 1

C)<LL.

03
1.-

* S - * L

- -0
Q. x

C) I- L

-Sj

) M
V) '

i.

2.6 Data Bases. PFA uses two data base files, the master file and the
standards file. The master file contains summary information on the program to
be analyzed. It is used by STAMP, SOFTPRO, SYSTRUCT, and PATCHANA to analyze
and report on program structure, maintainability, and software quality.

The standards file contains information on software standards. It is used
by SOFTPRO to calculate and report standards violations by the program being
analyzed and by SYSTRUCT to identify software quality metrics being compared.

2.7 General Description of Inputs, Processing, Outputs. Following is a general
description of PFA inputs, data flow, and resultant outputs.

2.7.1 Inputs. Table 2-I lists inputs for the PFA programs.

2.7.1.1 Source Files. The only PFA programs to use software source files are
COMPRO and AUTOxxxx (system-specific encoders).

2.7.1.2 Standards File. The standards file is used by SOFTPRO and SYSTRUCT to
calculate and report software standards violations. The standards file de-
scribes various software standards, including such information as description,
range to be within standard, expression for calculation, Military Standard Ref-
erence, and type of standard (code or documentation). The standards file is
created in two parts. The first part is created when the encoder is written.
It contains the descriptions of the basic standards, those standards whose
values are calculated by the encoder and output in the master file. The second
part of the standards file is created by the user any time before PFA run time. -

60 It contains the user-defined standards, those standards which are calculated in
terms of the basic standards or other user-defined standards. These two parts
exist in the same file and may be intermixed. The name of the standards file to
be used is specified by the user, but by convention has the extension STD.

2.7.1.3 Master File. The master file, or a subset of iL, is used by STAMP,
SOFTPRO, SYSTRUCT, and PATCHANA to analyze and report on program structure,
maintainability, software quality and source code changes. The master file
contains summary information on the program being analyzed. This information
includes the module names, prologues, flow of control, subroutine calls,
variable usaqe, comments, entry points, and values of varying software
qualities. the master file is output by an encoder or COMPRO. The name of the
master file to be used is specified by the user, but by convention has the
extension MST.

2.7.1.4 Selection File. The selection file contains the names of the modules
in the master file to he processed by PATCHANA. It is optional, as the module
names may also be specified at run time. The selection file may have been
prepared manually by the user, or it may have been output by SYSTRUCT. The
selection file output by SYSTRUCT contains the names of the modules determined
to have probable code-level changes.

2.7.1.5 Terminal Inputs. The terminal inputs are those inputs which the user
may provide at the console. Terminal inputs are required at the beginning of m

- STAMP, SOFTPRO, PATCHANA, SYSTRUCT, and COMPRO runs. The program prompts for
user responses such as input file names, output file names, and specification of
desired reports and program options.

8

/U

TABLE 2-I. INPUTS AND OUTPUTS OF PFA PROGRAMS

PROGRAM INPUTS OUTPUTS

COMPRO PFA Source Listings Master File
Encoder Listing

STAMP Master File External Procedures Report

Function List
Structure Charts
Module List
HIPO Charts

SOFTPRO Master File Software Standards
Standards File Violations Details

Report -

Software Standards
Violations Summary
Report

SYSTRUCT Master File Report
Standards File Selection File

PATCHANA Two Master Files or Subsets Report
Selection File (Optional)

9

2 27.2 Processing. The flow of data between PFA programs is shown in figure
S2-4. In addition, the terminal inputs to STAMP, SOFTPRO, SYSTRUCT, and PATCHANAare used to select the analysis options and the reports to be output.

2.7.2.1 Encoder (AUTOxxxx). The encoder is a front-end program to the PFA sys-
tem which translates computer/software/language-specific programs into a rep-
resentation which is stored in a data base called the master file. This master
file is then read by other PFA programs which generate reports. The encoder is
customized for each application to accommodate the specific machine/language
combination of the software system being analyzed.

2.7.2.2 Comment Processor (COMPRO). COMPRO extracts source code comments for
creating documentation. COMPRO reads program source code files which contain
comments in a specific format. The information contained in these comments is
used to create a master file which can be processed by other PFA programs to
generate reports used for program documentation. PFA programs are commented in
this manner to provide automated HIPO and structure charts for the PFA system.

2.7.2.3 Structure, Timing, Analysis, Modeling Program (STAMP). STAMP provides
the program structure analysis function. The STAMP program reads the master
file and generates reports on the overall system under analysis to aid in
modeling that system and to provide information about its structure. ST 4!,P
processes the master file (PFA data base) to produce the structure charts from
the subroutine calls information in the master file. STAMP also extracts the
module names to provide module and function lists. Additionally, the extracted
function and module names are examined to determine which routines are not
defined locally, and outputs these in an external procedures report.

STAMP develops a HIPO cnart based upon module information. The module name,
description, prologue comments, and path segment information (inputs, outputs,
quantifiers, node-path labels/branches, and inline com..,ents) are reported from
the master file. Information on modules called and calling modules is derived
from subroutine calls information. This process of creating the HIPO chart is
then repeated for each module defined in the master file.

2.7.2.4 Software Profile Program (SOFTPRO). SOFTPRO provides the software
quality analysis function. It requires as input both a master file and software
standards file.

SOFTPRO takes the formulas from the standards file and data from the
software quality records of the master file and computes the values of the
software quality parameters. It then takes the ranges from the standards file
and determines which parameters are within allowable ranges. The results of the
computations are passad to the output section to generate the exception, summary
and other reports.

2.7.2.5 System Structures Comparator (SYSTRUCT). SYSTRUCT provides analysis of
system configuration changes. SYSTRUCT reads two master files representing
different versions of the software system under analysis and generates a report
on system-level changes. These changes, determined at the module level, are
derived by examining differences in subroutine calls, number of paths, and the

* software quality metrics between the two versions. This information is then
S formatted into a report for each module which d;splays both the old and new

information and an indication of which items changed.

10

2.7.2.6 Patch Analysis Program (PATCHANA). PATCHANA provides a software patch
(source code change) analysis function. PATCHANA reads two master files or sub-
sets of master files representing two versions of the software being analyzed.
A selection file which contains a list of modules to be compared is also read.

The master files are examined to locate information on the modules listed in
the selectinn file. Path segment information, for the old and new modules, is
processed to identify differences in structure, subroutine calls, variable
usage, and the three quantifiers. This information is presented in a report
which lists both versions of the module and flags the differences.

2.7.3 Outputs. Table 2-I lists PFA program outputs.

2.7.3.1 AUTOxxxx and COMPRO. AUTOxxxx and COMPRO output master files and re-
formatted source listings. COMPRO's master file is based on specially formatted
comments in the input source listings.

2.7.3.2 STAMP. STAMP provides five reports, as follows:

a. The external procedures report lists each module which calls subroutines L
outside the set of modules being analyzed and the name of the sub-

routines called.

b. The structure chart shows the module call hierarchy of the system and
flags external and recursive subroutines.

c. The function list provides a list of all task-level modules in the sys-
tem, with the name of the module, a brief description, and version
information.

d. The module list contains a directory of the modules being analyzed, ar-
ranged in alphabetical order. It also contains an indicator to signal
whether the module is cask level, subroutine level or an unused entry
point; the top and bottom hierarchical level on which the module is
called; a brief module description; the version information; and the
page number of the source listing where the module Is located.

e. The HIPO chart lists the name of the module, a brief description, the
version information, and the page number of the source description. The
HIPO chart also includes the path segment structure of the module. Each
path segment contains the names of imodules called, comments about the
path, three qtantifiers (discussed below) and the sequence number range
of the source statements which make up the path segment. The path seg-
ment information includes inputs and outputs for the segment.

The quantifiers are user-selected values (determined by the particular en-
coder used) extracted fron the software being analyzed. Examples are execution
module timing, source statement counts, and machine instruction counts and are
determined by encoder design. Those items which are not available do not
prohibit processing. The STAMP program will report whatever information is
available.

11

2.7.3.3 SOFTPRO. SOFTPRO provides two reports, as follows:

a. The software profile reports fcr each module list the violations of
software standards as defined by the user in the software standards
file. The violations state the standard, the value for the software
being analyzed, the permitted range of values, and the reference to the
regulation from which the standard is derived.

b. The profile summary contains the list of standards, the number and per-
cent of modules meeting each standard, the number and percent of modules
violating each standard, and the reference to the regulations containing
each standard. Additionally, the quality values are summarized for all
the modules and listed individually for each module.

2.7.3.4 SYSTRUCT. The SYSTRUCT report lists changes in variables used by each
module, changes in software quality parameters (the ones reported by SOFTPRO),
and modules which have been added to or deleted from the current version of the
software being analyzed. The changes are of two types: those affecting exe-
cutable code and those affecting code documentation. When changes affect exe-
cutable code, a list of changed modules is generated for use by the patch an-
alysis program.

2.7.3,5 PATCHANA. The PATCHANA report lists the path segment structure for
bcth versions side by side and indicates (with codes and arrows) the location of
differences and what was changed for each version. When structural differences
occur, the differences are flagged from their start either through the remainder
cf the module or to the point where the structures of the two versions are con-
gruent. PATCHANA finds differences in structure, subroutine calls, variable us-
age2, and the three quantifiers.

I

SECTION 3. STAFF FUNCTIONS RELATED TO TECHNICAL OPERATIONS

3.1 Initiation Procedures. The first step for using PFA for software analysis
is to obtain the encoder, with documentation, for the particular programming
language and computer system for which the software being analyzed is written.

The second step is to obtain the source code or compile listing for the
software under analysis on machine-readable form (tape or disk).

Next a file containing software standards to be applied to the software
under analysis must be prepared, and the encoder must be run to create the
master file.

The system manuals for the particular computer system where the PFA system
is being run should provide specific log-on and program running procedures.

*3.2 Input Requirements. The user must obtain the source code for the system
being analyzed, in the format required by the encoder being used, or the source
code must be prepared in correct format for COMPRO if PFA is being used for
documentation.

A standards file must be prepared in a format prescribed by this document
and in accordance with the encoder design.

The user must answer the prompts output by the PFA programs, which request
the names of data and report files and processing options.

A file containing machine/language-specific source code or compiler listings
is converted to a common format, independent of the machine/language com-
bination, creating a master file used by the generic report programs of the PFA
system.

When COMPRO is used to extract information for documentation, the input con-
sists of specially formatted comment statements. These format statements may be
intermixed with executable statements, as encountered in a normal program,
though the latter are not essential. Input which consists entirely of the spe-
cial comment statements is similar to a program design language.

System-specific encoders (ALUTOxxxx) require input which is dependent on the
specific encoder design. This input would normally consist of the software
source code or a compiler listing of the source. Encoders may require that cer-
"tain compiler options be exercised in creating the listing file (e.g., specify-
ing the option of generating an assembler-level listing).

3.2.1 Source File. Figure 3-1 is an example of a specially commented PFA
source module. only source file documented in this manual is the PFA source
used by COMPRO to produce a master file. COMPRO processes specially formatted
comments in source code to produce the master file.

3.2.2 Standards File. Each record in the standards file consists of eight
variable length fiels separated by semicolons. Figure 3-2 is a sample

** standards file. The standards file records and fields are described in
* appendix B.

13

. .* .* .** .* ** t* **.*..*.......*n..n

$,')r-IvfJtINE REAOSTD - READ STANDARDS FILE

* RFADSTD RFADS THE STANDARDS FILE AND STORES ri4E INFCRMATION FOR
? IME BASIC STANDARDS IN THE STANDARDS TABLE.

* 9
* CAtL PEADSTD()

V YAPIADLE LIST

C;Sc - STANDARD DESCVI'TION
11IV - EXPRESSIC4 FOR CALCULATING STANDARD

* IDX STANIDARD LABFL AND INDEX INTO STANDARDS TABLE 9
MAXV M AXIJUM VALUE TO MEET STANDAOD
MINV MIINIMUWM VALUE TO MEED STANDAD 9
S TICYIF FLAG INDICATING WHETHER A C1'AMGE IN THE VALUE OF

THIS STANDARD SIGNIFIES A CODE OR DOCUPNSTATION 9

* CHANGE IN THE MODULE (-C.D)
* STANTIWfO - INPUT VARIABLE FOR STANDARDS FILE

S10 - SEE STD DATA STRUCTURE
STDPE.C - STANDARD TABLS ENTRY

1 SIOWIA - STANDARDS' TABLE
"TrP - INPUT RECORD FOIMI STANDARDS FILE
W NET - FLAG INDICATING WHET1HER CURRENT STANDARD IS TO BE .

, REPORTED

* -0 - DO NOT REPORT
* >0 - DO REPORT 0

* FILES USED.

* STANDARDS FILE - FILE SPECIF'YING PROGRAN STANDARDOS

SCALLS LIST

- CAD RF.CORD AND GATHER DATA \1-i.S

* IN'PUT STANDARD- IP. TEMP: ST. DESr. ST, 'CT ST. MINV: ST. MAXV* ST.
• DIV ST.SIGNIF ST, IDX. ST. STOREC: STD
* 0'JPUT N IN. TEMP ST. IDX: ST. DESC: ST, .KT. ST. MINV- ST. MAXV- ST, GIV: ST.

"SI"NIF ST. STDREC: STD, IDX: IN. STDTAU'•IDX>: STO. STDTAS: TA
* CALLS. LIST

PFAn3TD N - 0
STDTAB - TADLE(17)

PSI TEMP - STANORD F(RETURN)
lOX - LIST(TEMP, 1.°)
DESC - LIST(TEMP. 2,
N.ET - LIST (TEMP, 3. ';
MINV - LIST(TEMP,4."i')

MAXV - LIST(TEiPW.. ''I)
r-IV - LIST(TEMP .6. ' ')
SIGNIF - LISTITEPIP.7.;')
STDREC - STD(DESC. WNT. MINV. MAXV. CIV. MULL. SIONIF)

r rEST FOR BASIC STANDARD. STORE INFORMATION FOR BASIC STANDARDS
* IN STANDARDS TABLE. SKIP USER-DEFINED STANDARDS

IDX - CONVERT(IDX. 'INTECER') :F(RSI)
STDTAD.IDX> - STOREC :(RSI)

Figure 3-1. A Sample PFA-Commented Source Program

E• 14

w zz N0)').1
O0m

xWu

PIZ z a1' 00

.- (00. 6- 0-P :) - . .C
aw- OQ n - .- 0 w O.'

W0. 0 WO a.!.. Q a

a- . 0 0. WW0

I -£ *.e > .:WW--.*.
O0Wcb~0 .- 9 I- I.J . - I.-(M

CC. I- CWIn 0-r0 ..
a6- *jo imzWuI-O .O.-000-

A -a.0ec I- -19 U . . W-- 0UI tvI8 0
ZWW. &.* CL...~ - V V~--

A WO!--.-

A I.. -W 00>
zJI--0n-. V -- eiWWWwOWa U

up- EM L..jj

- ~ a -- uu m u w w

EtrEErx1(rjo UZrEZXD

- m ti .~ u aw -a.I. .e .~ .i . ..

15

*i The following describes the appropriate vocabulary for each field of a

standards file record. No field may contain a senicolon.

Field Description

Identifier Integer for basic standards (1-14)
Any other value for user-defined standards

Standards Any text

Weighting Factor 0 for no report on standard
1 for report on standard

Lowest Permitted Any value
Value

Highest Permitted Any value (must be greater than lowest permitted
Value value)

Calculation Null for basic standards. A reverse Polish expres-
sion for user-defined standards. The expression
may consist of constants, the operators '÷', '-'
'**, and 'T', and the values of previously defined
standards, referenced by the standard's ID in
parentheses. For example, '(5),(1),/,' is a legal
expression.

Code/Documentation C for code standards
Indicator D for documentation standards

Standard Reference Any text

3.2.3 Master File. Figure 3-3 is an example portion of a master file. The
master file contaTns summary information on the modules of the program being an-
alyzed. Currently there are eleven record types in the file, each describing
one aspect of a module. These records are grouped within the master file ac-
cording to the module they describe. The aspect of a module described by each
of the record types is as follows:

Type Information

- Header Record
0 Library Routine Definition
1 Task or Subroutine Definition
2 Listing and Version Information
3 Prologue Comments
4 Path Definition
5 Subroutine Calls Information
6 Variable Information
7 In-Line Comments
8 Software Quality Info,'ation
9 Entry Point Definition

16

w 0

. 4 rd M 0 V V rW 0 r. 0 .

W W w r
; 0--c

44 Cd a, 0 m4Il 0 Z C 0 rd- n 4 i
W 0 O W t0; X aE 0 E 0

ad 0 0 0 c0 0 0 Lw LIM. 4 1- 0W DW C'

0W NM ;. 0 t. '

3 % - 0! Z' 2. 8 .-.
<~~ qw xz M E _Z-1 M 0 U Q (

a L.4 0 Ou Wo Wc Wc u "- 0 0.-iM.0 - 0

D Wo WI vwv . 0 -4 zE >1 <- I.- Oma -0 ao 'a
a) Pd.d. -V PW I- 0 4 0- ~ 0 -Z 0 40 W 0. aq -0 1. x. - L(4 c 0 _O

W 0 41. > U)M - n.410 PI0 > 4-4 M~ L .. J 'cI 00 W0 0
0 0 -ZC. O OWO. 0 MZ u0 W.. 3. 2> M411 .4l~00 0

a0,-D,-0~~ V -0. 00e T..4 0 .- .9 - CO -, W--I .0J Oi O
(iW;U C0.O s S1 v-a W --'! wo QI- V' u

.W UO 0 0 "I. a 0-W In 111 0 1- V4~ OA l- Z W - 0 . 6W 0W O . 0 a-
Wori. M aW- ca 0 WO N r - . In a0 -C 0 w iU4 0 O <~ W- -OWO- wI0 a D CdD 4 C

ul- i (.1 0 -1 0 13.J 4- N.JO w LED U Z2 C - n _00 J. .-.
a L000 0 0 ~ CLW 0~ 0 0 > > >.OM (LW O W C-. LanLW. g LAI-40 P.- 0r W U0.. -CO**0
W1-0..0..Ci .. 04n 4. ,!W .. 0. XIn rd I-I- 0.Wcd z 3- 0 -20149 < ~ 0-----.

cyO M CI. I.N- w MO.Z00I u w -4 z1 .6z I- I-'J- 9WIZ43ZwILmz w W-W11 . IL a. E.W)i 2 4 o I0 OI o .wwrO 4 0"- 0-
004M -1 0 .J9 - 3 1-. aI 0g w1 wI

t.. 0. ý_ EnI raI-CJnC30...-.W

(D.aI- 00 1- ZW 80 Ho- OcW Z. i .1Wu 4I-J_ D. D

0 1.4 4 P J~f 00 W O d0 C d d 0 . J 4. 0 . 9 - - 0 4 4 C

S 0-0 LL31- -. -- W n.WZt

0. 000 0!..? 0000 f 1(0 0000? 000 0000000

- M__ oOW~v tL-www r~o00170

The header record has the form "#-H-modname", left-justified. The re-
cord fields and their layouts are described in appendix B.

3.2.4 Selection File. The selection file is a list of modules to be processed
by PATCHANA. Each line contains one module name, in the format required by
the system on which PFA is run. The selection file cannot contain any blank
records.

3.2.5 Terminal Inputs. All terminal inputs have a maximum length of 80
characters and must be left-justified.

a. Option Specifications. The affirmative response to prompts for all op-
tion requests is 'YES' or 'Y'. All other responses will be interpreted
as negative.

b. File Name Specifications. All file names must be in the format re-
quired by the system on which PFA is run. The PATCHANA request for a
selection file name may be answered with the response 'TTY' as well as
a file name.

c. File Name List Specification. The specification consists of a list of
file names, each in the format specified by b. above, separated by
commas or blanks.

d. STAMP Report Specification. The specification consists of a string of
contiguous lett2rs as described below.

Letter Requested Report

E External Procedures Report
S Structure Chart
F Function List
M Module List
H HIPO Charts

The letters may be in any order. In addition, if no specification is
made, the STAMP default is to output all five reports.

e. STAMP Variable Lists. STAMP allows the user to specify that certain
variables in the program being analyzed be included or excluded from
processing. The responses to the prompts for included or excluded
variables must have the following format:
varl:tyl:ul,var2:ty2:u2,...varn:tyn:un,

where vari is the variable name, tyi is an dbbreviation for variable
type, as specified in the appropriate encoder manual, and ui is the
variable usage, encoded as follows:

D Defined
R Referenced
T Tested

- M Modified

A null entry in one or two fields means that these fields will not be
used as selection criteria.

18

3.3 Program Operations. The operation of the PFA is discussed below.

3.3.1 COMPRO. COMPRO extracts and processes comments from a program source
file for creating program documentation. Figure 3-4 shows the data flow between
COMPRO and the rest of the PFA system.

COMPRO reads program source code files which contain comments in a specific
format. The information contained in these comments is used to create a master
file which can be processed by other PFA programs to generate reports used for
program documentation. A listing of the source code is also produced.

3.3.1.1 COMPRO Input Requirements. The only source file documented in this
manual is the PFA source code used by COMPRO to produce a master file. COMPRO
processes specially formatted comments to produce the master file. The
requirements for the special comments are described below.

a. Prologues.

(1) Each module has a prologue.

(2) The prologue is surrounded by asterisks. This means that the pro-
logue must be preceded and followed by a line consisting only of a
string of asterisks and that each line in the prologue must begin
and end with an asterisk.

(3) Every prologue contains as the first non-blank line:

r TASK
SUBROUTINE <name> - <description>
LIBRARY ROUTINE

Where, if the module has multiple entry points, <name> is the name
of the first entry point.

(4) Following item 3 is the module description:

AUTHOR:
DATE STARTED:
DATE LAST MODIFIED:
PURPOSE: <function of module>
DESCRIPTION: <general design description>
CALL:
PARAMETER LIST: <parameters and descriptions>
USER-DEFINED DATA STRUCTURES: <structures, fields, and

descriptions>
VARIABLE LIST: <variables and descriptions>
FILES USED: <file names and descriptions>
CALLS:
LIMITATIONS:
ERRORS:

as there are appropriate data to include.

19

SOURCE CODE

COMPRO

Figure 3-4. CO IPRO Cata Flow

20

(5) For each additional entry point the module contains, (4) above is

followed by:

ENTRY POINT: <name> - <description>

and again, as many of the items in (4) above as appropriate.

b. In-Line Comments

(1) All in-line comments are separated from code by strings of
asterisks.

(2) In-line comments do not contain

(3) The in-line comments may contain psuedo path segment
specifications. These specifications document the flow of control
in a module and are used by COMPRO and STAMP to create HIPO
charts. If used, the path segment specifications have the fol-
lowing fomat and meaning:

(a) The specification for a path segment begins on the first com-
ment to be included in the segment.

(b) The specification is the rightmost item on the comment line.

(c) The specification is of the form:

[m][nl,n2,....[E]

where m is the optional node label for the start of the path
segment, ni are the optional node labels to which the segment
branches, and E irdicates branch to exit. If the from node
label is null, the from node label will be assumed -to be the
current node count f-or this module. If the to node labels
(including E) are null, the to node label wiTT be assumed to
be the current node count fo-rthis module plus one. If this
path segment is an entry point for the module but is not the
first entry point to the module, m must be the name of the
entry point.

(d) The last path specification in a module has a to node
specified.

(4) All referenced and modified variables appearing in a psuedo path
segment are listed in comments within the path segment for use by
COMPRO and STAMP. If there is no path segment specification, all
referenced and modified variables for the ,1 odule are listed. Com-
ments listing referenced or modified variables have the respective
formats:

INPUT: var1[:type],var2[:typi],...vari[:type],

... varn[:type]

21

OUTPUT: varl[:type],var2[:typel,...vari[:type],

... varn :type]

where type is optional and is an abbreviation for The
variable's type. In the case of SNOBOL the types are abbreviated
as follows:

TYPE ABBREVIATIONS

String ST
Integer IN
Real Number RE
Pattern Structure PA
Array AR
Table TA
Created Name NA
Unevaluated Expression UN
Object Code CO
Programmer-defined Data type name
External EX
Input IP
Output OP

Several lists may be included in one path.

(5) All subrcutines called in a pseudo path segment are listed in com-
ments within the path segment for use by COMPRO and STAMP. If
there is no path segment specification, all subroutines called in
the module are listed. Comments listing the calls have the
format:

calls: callI, call2,...calli,

... cailn

S,;veral lists may be included in one path segment

3.3.1.2 COMPRO Initiation Procedures. COMPRO may be run from any interactive
terminal connected to the VAX. Assuming that the uzer has logged onto the VAX
with the correct password, he can run COMPRO by entering the command:

$ PFA
(respond to menu prompt for COMPRO)

COMPRO will then prompt the user for the following information. The user's
response is underscored.

22

/ '

. COMMAND/RESPONSE EXPLANATION

"ENTER SOURCE FILE NAME The entered source file name is the name
M.SNO of the source file to be processed by 0

COMPRO.

ENTER LIST FILE NAME The entered list file name is the name of the
M.LST disk file containing the output source

listing.

ENTER MASTER FILE NAME The entered master file name is the name of
M.MST the output master file.

COMPRO will then complete the master file generation with no further

prompts.

3.3.1.3 Files Used in COMPRO Processing. COMPRO docs not use temporary files.

3.3.1.4 COMPRO Recovery ind Error Correction Procedures. COMPRO indicates the
following errors:

a. Message: "ERR1O: ERROR PROCESSING LINE IN MODULE ".
"(line>

This means that COMPRO has found a line in the PFA source with an un-
expected format. The message indicates an error within COMPRO, and
processing terminates.

b. Message: "ERR20: UNEXPECTED END OF FILE IN MODULE "

This means that COMPRO has found an end of 14 !e while reading a multi-
line list. The message indicates an error in the PFA source. Process-
ing terminates. -

In the event of a hardware error which terminates the program, the program
must be restarted from the beginning. In the avent of a fatal software error
while running COMPRO, all files must be checked to ensure they exist and are not
attached to another program; COMPRO is then rerun.

3.3.1.5 COMPRO Limitations L

a. Comments in the input source listing may not contain

b. Prologues must be delimited by a string of more than 40 asterisks an-!
other comments cannot be.

L
c. In-line comments must be separated from code by strings of asterisks.

3.3.1.6 COMPRO Sample Outputs. Figure 3-5 presents a sample from a master file
output by COMPROU The layout of the master file and the meaning of each field
is described in appendix B. COMPRO does not output a value for the following

S fields described in appendix B: Source Sequence Number, Version Information,
Quantifiers 1, 2 and 3, and Start, End, and Branch Sequence Numbers. In ad-
dition, COMPRO outputs only one software quality parameter to the type 8 record.
This parameter is the number of non-comment lines per module.

23

LL IL WI- Ifn 9
Cz .. W U)

Z w z wj 0 > a. .2

LW n D~ -W ft LL <
- U 4 4 n 0

a ..in . I-

Q a

U - I-U Z ~ . L L-
w a4 -i w in 40 .~.-. Z

I- (A QI -C m U I- W- ~ C 0 -t w
D :k Z1J< 0 a z.wI- Z an W.(0 I

mz < 0n 4 CZ W IZ aZ Cr I- I WI n n

I-x WI- 4 1 Q In < WI c L - (r <..W CL
..IL n 4w mC U -w2o m .,-. .0 O W W I-I
0~ m I-4 cZ C3 w~ - w mOm

z Q.- < I Z n -W l - 4 LLW n In0 a 0 W <.IEI

I C.- (n . '->II 00 < < Z O DIri1 L CL E n.4 0.
I-ý- n LLU-C U <0 mW - Wf~~ w~ 0 0. .- . -1

In mO 4 In 40 fn-C. I-O LM4 00 (3 (0n C31: <4-

I-1I 0 W0 Cu -J ..W- I- .W < ýflW <' n

I-I-*OWCý ý I- c z 400 0If-(
;LI a.4C IL WU < ' n(M D7Wý- < - -M -.-- w za

U0 < I In -1 0 M4E Z EI
w U II I I I I I I II-440

ILI- -. n U C w .j-Z<o0 WO - - - - -- --

.0. < I-0 0 - W In0Q2< 2 I- ýC0 0Z LI. wI C3 m
W L -x0- 0-I 4i - z~ rW0C-. I-4 inI 0I- ..-. WC En(-3w

-j I m C MOZ iIWC I m -jE ZOL -
< C <.. 0 C WO <0 -Of~l Z C CI IC - I

I- 14 40. U) 4- Qa 4 O >0 LL Q.I

M ') ý r)ý 4 3wCd((W C l M M MM I MM MMLI MM M MM OMMWMM MM a .. 0I-4 ..i-a NN N-W

OI' W4 - 4 OWEZ .- oI S.

U CI- - 0
U I- 4W .. 1111 111 1124

A reformatted source file output by COMPRO is similar to figure 3-1 but
includes page numbers and page headers. The page numbers provided with this
listing are referenced by some of the reports produced by STAMP, SOFTPRO, SYS-
TRUCT, and PATCHANA. The page headers indicate the report is unclassified.

3.3.2 STAMP. STAMP provides program structure analysis. Figure 3-6 shows the
data flow between STAMP and the rest of the PFA system.

The STAMP program reads the Master File and generates reports on the nverall
system under analysis to aid in modeling that system and to provide infomaion
about the structure of that system. STAMP provides five reports, as follows:

External Procedure Report
Structure Chart
Function List
Module List
HIPO Diagram

3.3.2.1 STAMP Input Requirements. The encoder (AUTOxxxx) or COMPRO must have
been run previously to produce Mhe master tile needed as input to STAMP.

3.3.2.2 STAMP Initiation Procedures. STAMP may be run from any interactive
terminal connected to the VAX. Assuming that the user has logged onto the VAX
with the correct password, he can run STAMP by entering the command:

-2,5

MASTER FILE

STAiP1P

Fiur3Module ListM a

Figure 3-6. STAMP Data Flow

$ PFA
Trespcnd to menu prompt for STAMP)

STAMP will then prompt the user for the following information:

COIMMAND/RESPONSE EXPLANATION

ENTER MASTER FILE NAME: This is the master file to be processed
M1.MST in this STAMP run.

ENTER REPORT FILE NAME: This is the name of the disk file to con-
M.REP tain the output STAMP reports.

DO YOU WANT ALL THE REPORTS? 'YES' or 'Y' sets the default to produce
N.NO all of the reports, otherwise the user

must select the desired reports. In the
example, the negative response indicates
specific reports are desired.

SELECT REPORTS (E: EXTERNAL, The request to select reports allows the
S: STRUCTURE, F: FUNCTION, user to choose the reports he desires.
M: MODULE, H: HIPO) In the example, the structure chart and
SH HIPO charts have been selecttdi.

DO YOU WANT SPECIAL PROCESSING? 'NO' or 'N' if additional options are not
Y-S desired. If 'YES', user must answer

prompts to select desired processing.

DO YOU WANT TIMING MINIMIZATION? Timing minimization provides information
YES for timing analysis using the path

segment descriptions in the HIPO charts.
If minimization is requested, the
quantifiers, consisting of such values as
execution time or number of executable
lines of code reported for each path
segment in the HIPO chart, will show only
the difference in values between paths
from the same node.

DO YOU WANT PATH PRUNING? Provides additional information for tim-
YES ing analysis using the path segment des-

criptions in the HIPO charts. If "YES"
in addition to timing minimization, ref-
erences to nodes, all of whose path
quantifiers are zero, are deleted and
paths reconnected as necessary.

DO YOU WANT DEBUG OUTPUT? Consists of node date output to the file
NO STAMP .TMP.

DO YOU WANT FULL STRUCTURE CHART? The full structure chart includes module
YES descriptions along with the module

names.

••77

COMMAND/RESPONSE EXPLANATION

DO YOU WANT VARIABLE PROCESSING? Variable processing is used to include or
YES exclude specified variables from process-
M[ER VARIABLES TO BE INCLUDED: ing. The variables to be included or

VAR1:IN:M,VARI:IN:R excluded must be specified at the next
two prompts. The first prompt, for
included variables, deiaults to all.

ENTER VARIABLES TO BE EXCLUDED: The second prompt, for excluded
VAR2:IN:D variables, defaults to none.

The STAMP program will then complete the report generation with no further
prompts.

3.3.2.3 Files Used in STAMP Processing. Two temporary files are used in STAMP
processing, STAMP.TMP and STAMPI.TMP.

3.3.2.4 STAMP Recovery and Error Conditions. STAMP provides the diagnostic
message: "BAD MAP FOR ". This means that there is a to label without a
corresponding from lab-F-F that the from or to label is null for a path datum
in the master file. This results fr6F-incomzp~te path structure generated by
the encoder or from dead code in the source code being analyzed.

In the event of a hardware error which terminates the program, the program
must be restarted from the beginning.

In the event of a fatal software error while running STAMP, the user should
check to make sure all files exist and are not attached to another program, and
rerun STAMP.

3.3.2.5 STAMP Limitations. STAMP may cause memory thrashing if there are more
than 1000 path records ir any module or if there are more than 300 path records
in any module and path pruning is being used.

3.3.2.6 STAMP Sample Outputs.

a. External Procedure Report (see figure 3-7). This report shows all calls
to external procedure in the program being analyzed, where an external
procedure is any module not appearing anywhere in the file. The calls
are shown in the order in which they appear in the file.

b. Structure Chart (see figure 3-8). The structure chart shows the calling
structure of the program being analyzed. Each call statement occurring
anywhere in the program is shown, along with the "level" of the call.

I The main module is listed first, with a call level of zero. After each
module, all modules called by that module are listed, at the next-
highest call level.

c. Function List (see figure 3-9). The function list is a list of all
task-level modules in the system. The name of the module, a description
of the module, and version information are provided.

28

44

I a

a~ S-IXW C

ej I~I IA

Ju 0e~~' 'AS .
<4j kL- QO~LAec #

* S S29

CCA

CI -K

SWW *1 C.SW

I In I

I * S

I (K< m It I

I IL I

x w x

La Q I- mwC'

I I w

LX C -

22 w
-C iWW U 0 w

-1 1 in- 1- D U~ . I

30

/

aIc

6-4 ~ ~ ~ 6 Cc w WaL~~.~aL.a

s±. ~ a 2 'A Z -3

l* 00 4.

1- 0- >W CL (

r wi-ic w o u -

-C. - L. L 1

sZ;W-uw uwowI.-46 LA-.
l40 0 r W Z U..

I-. aL. a

C- -~EIZw O.UU

14.D IUUOD

31

* d. Module List (see figure 3-10). This report lists all subroutines and
entry points in the program being examined. It provides the following
information for each module:

(1) Module name

(2) Type of module: S = subroutine
T = task
E = entry point

(3) Page number refers to the page on which this module can be
found in the listing provided by AUTOxxxx.

(4) Description of module is taken from the first line of the
module.

(5) Call level shows both the minimal (top) and maximal (bottom)
"Mdistance" of the module from the main program as determined
from the structure chart.

(6) Version information is taken directly fror the master file.

e. HIPO Diagram (see figure 3-11). This chart shows, for each module, the
following information: module name, a list of all modules which call
this module; a description of the module; and a list of all program
segments of the module, where a program segment is a contiguous group of

0 records which contains no branches except possibly on the last record of
the segment.

For each segment, the following are shown:

(1) Inputs: This is a list of all variables which are referenced
within the segment.

(2) Processing: This is expressed by the string:

11: labell(SI) label 2 (S2): <firstline-lastline> branchpoint 11
is a sequence number.

Label 1 is the line number of the first record of the seg-
ment.

S1 is the segment number. (These are assigned sequentially
in the order in which they occur i4a the module being
scrutinized).

Label 2 is the line number of the segment to which program
control is transferred after this segment of instructions has
been executed. If program control can be transferred to more
than one segment from this segment (such as in a conditional
branch), then the information for this segment will be re-
peated once for each branch point. (That is, only 11,

* label 2 , S2 , and branchpoint will change).

32

w

I LL

0I

0- - 0C"00Io-fo0

w i

I C-IO--0"-00 -- oOO0
241

I cc

W-4 I 4
CL 0.;j

2 b- I w CJ w c aJ A

0 < 03

o0 w0 9 (AO 430 H

4U. U E

In AM a2" "wý Lt

09194 1-Z a i -0- A WI. -z C3 (n"ut n
M, 61 z Z!I- -o6 cm

3 x 0 0 .I.

G C.O.OU0WLý)Qa.I-4 :)a.40..nLrUX

Qc0o(mWu, 00Wo.WcK

*~zi

jl t1 I. < 0-1 !I
I -I I-WAICAI--I-AIs--I-ClWCIIuuI-fl-W-I

33

I-

mam

a:..

a. w

z D
u -

'man
I I **2

rl ~ a $. m4
0 cn a w m 04

m CD

0 Z E L
0 Li

<~~ 0 ucr c IL

a 0 10 UL I. 0nI

55 LL Z I I w -C t

J
IJ I-SU

9- 0 En m ~ z-

SanSw 40 a.. a.o a.

=S 0z -) z . CI - I: rf , D a

4 WLL cI CI U 4% af CL w4 =
1E W (x 1 rac

aUIZli D 0I0 -0 0 M .0

<i I'- D ic d 1 3i Q. 0 1 0 5

SSSI~~I 1~.- 0- 4 .A Wa *

9WO cc Wa w1 w. 0 ,0

It m~ ix40 9x - -. I U

U. D 4 40 .. 0 4.4 w
in 00 CW LiJ Nr' <4O <r-.-M .

~w a LL. Z 0*. 0. 0 .U L i 1.-

-~ ~ ~ wý a.. Lol .-- U .l 0-

w I U: j- j 0

in E - C .

4 ZLL a.0 0

P. a. Di~ - I.-
En m ZL > M

= a . <-a . 1

< Ca. r

I I- < 0 U(_ < 0
X uf a. P_ r If

w 4 Ir U a

U. 0. u a.OJI I

I- 0- _j ?- 4 m il
0 <4c U, a J .. . 9-I

<i 0n m 1 U29 4 r <

- 4 a. j .. P- :: I
9-~~C_ 0 0 a. iaZ

-j _j a. 4 -- z J D i

-) z ca _ 0 a. <
Loi : D- Z z ?~.0< -i

D 0 a. c4 u U_ m a. m Z

ul 0
u4 .z .. U.

U U (~a.0i. E34

*. S2 is the segment number to which control is transferred.

Firstline-lastline shows the first and last records of this
segment.

Branchpoint is the record to which control is transfei,.'ed.

The first line is followed by a second line with three
values:
01: This is the computer CPU time this segment consumes.
Q2 is the number of assembly statements in the segment; and
Q3 is the number of storage words in the segment.

(3) Outputs: This is a list of all variables which are modified
by the segment.

3.3.3 SOFTPRO. SOFTPRO performs software quality analysis. Figure 3-12 shows
the data flow between SOFTPRO and the rest of the PFA system.

SOFTPRO reads the master file and software standards file and generates two
reports. The software profile reports for each module list the violations of
software standards as defined by the user in the software standards file. The
profile summary contains the list of standards, the number and percent of mod-
ules meeting each standard, the number and percent of modules violating each
standard, and the reference to the regulation containing each standard.

3.3.3.1 SOFTPRO Input Requirements. The encoder program AUTOxxxx must have
been ,un to create the master tile. The software standards file must also ha-ie
been created.

3.3.3.2 SOFTPRO Initiation Procedures. To run the SOFTPRO program, the ust-
should enter, from. an interactive terminal connected to the VAX, the command.

S PFA
Trespond to menu prompt for SOFTPRO)

SOFTPRO will then prompt the user for the following information:

COMMAND/RESPONSE EXPLANAT ION

ENTER THE MASTER FILE NAME: This is the name of the master file that
M1.MT will be prcczzssed during this run.

ENTER THE STANDARDS FILE NAME: Tnis is the. nam.e of the standards file to
MI STO be referenced during this run.

DO YOU WANT THE FULL REPORT (Y/N)? A fulI report includes a software
Y standards violations details report for

each module as well as the software
standards violations summary report for
the entire program.

SOFTPRO will then proceed to generate the software profile reports.

35

/

S OF TWARE
MASTER FILE STANDARDS

FILE

SOFTPRO

Softwar'e Star]
dards Viola-
tiors Details

Sftw-are S-a
dards Vi:
tions Sua'yI,

Figure 3-12. SOFTPRO Data Flow

36

* 3.3.3.3 Files Used in SOFTPRO Processing. The report output from SOFTPRO is
placed in a file named PROFILE.REP. -

3.3.3.4 SOFTPRO Recovery and Error Correction Procedures. SOFTPRO has the fol-
lowing error conditions:

a. Message: "STANDARD REFERENCE IN STANDARD LINE " IS NOT FOUND

This means that a standard reference in the calculation field of the
indicated line of the standards file cannot be found.

b. Message: "IN STANDARDS FILE, ERROR IN SPECIFYING CALCULATION FOR
STANDARD LINE

This means that the calculation field of the indicated line of the
standards file is in error.

c. Message: "IN THE STANDARD FILE, LINE SPECIFIES A CALCULATION FOR
A BASIC STANDARD"

This means .hat for the indicated line in the standards file, the
standard number is between 1 and 14, indicating that it is a basic
stindard, but the calculation field contradicts that by providing a
calculation.

d. Message: "IN THE STANDARDS FILE, LINE SPECIFIES A STANDARD WHICH
SIS NOT BASIC BUT IT HAS NO CALUCLATION"

This means that for the indicated line in the standards file the
standard number is not between 1 and 14, indicating that it is not a
basic standard, but there was no calculation using basic standards
included in the calculation field.

3.3.3.5 SOFTPRO Limitations,

a. A maximum of 14 basic standards can be entered on the standards file. A
basic standard is one directly calculated by the encoder, AUTOxxxx. It must
have an identifier of from 1 to 14 in the standards file.

b. Module names must be from 1 to 10 characters long.

c. The maximum number of standards allowed to be input is 30.

d. The maximum number of operators allowed in a standard expression is 20.

e. The maximum number of subroutines allowed in the master file is 200.

The last three limitations are program parameters which may be increased by
modifying the parameters in the source code and recompiling and linking.

3.3.3.6 SOFTPRO Sample Outputs.

a. Software Standards Violations Details Report (see figure 3-13). This
report lists each module of the file being analyzed. For each module

37

4 . o. .2 1 .- • . .

I I .x , I I j jjj _ I r 1 I
Do~ Mg :) .0 1~ 1 mI a. . .

Q-Q Q Q la a 0 : IQU ý u i

In I I-WnL.W; ' c;. 6j C; . Z16 66 l

a. 00 0a. a.1 0.1 a. a U a.aa.0.1 a0I

WEI W EI wl WmWWWWWWI wI WEI

WwWr iIII I I .0001 001 001 01 000000001 01 001 -

1> n. 0. 0.1.1

(P.0. 0.' (1. ~ 1' 0. 0. 0Co;0

00001!0 00 1 0 000000001 010 1
00 0 o0 i0 - -10 Ii - 001

W , 2O w udO j 1~ *. 01 2 0
a< W . L j U a w C Wd W (IJOJ

.1~~~ZýZZ~ 2i 22.I 4 .. I 4I 4 ... I 4 . 1 (A

012100 001 001 al a0000 a001a Ia CW WWWI WW I WWI W I W W WWWWWWI WI WWI.1)

r r rErW Exl EEI 0 W MEXEEEEEZ I rI I~crccmm .Ixm . m1 EE xx mmE =I W m 1 aI
L0.0~.I W Ww WW WWWWWWWWI WIE WW Wm1.a0Iz a L 1 0 a. a. a. 0- CL 0.C.01 0 .1 0.0a. au 1e l4 -jI(

I IC u I
I I fn I WS0000rd t W o, 0 0 1 0(t.I~ mC

o In 3 On0 II M m O 1 " 0 000 0?1 0,0 10. -
I N6r1113 c It 44'02I'21'dI I NI 0 Ic

1 I3 12 12 U.
I W w -1~ BE 14

IZ IE 1(0 14 01
I (I-i IZ 0**3

(xtI I =I-
uu

10 IZ 14 10I ~ -I 100 1-1D L 0r InemIn11lw
-C cn < ZZ(10cna -.

- I II- -8 2 1 WWII< 1Z > 2 S

MI 01W. m~ o 0lm a>>>0tI1 EI EOa.L00aW Q -i 40W0. m0WI. 901 40W-- I-I <0I 40.1

2ZZW< 4 WI 0 <a.WI a. w :Z -CWW~~I 4'LIz < 0. 4W Z I a- I WWEE'I IWI I.- z I~ I- 04' l-W. .. IW .J 0. < l w

z1 00 000 zw a ý -WI < z Z W W I r <.l Z , Z Iz w-o I i..d i, Z II- Zr -0rI a ZI -I 20 ' WriJJ .1 Zj I av-Olr r
WZOWCI 11110 0210 OZIO O OW WEE I ON I TZOI

C4 o u : 1.1 0 X IW 4201 Z uU 10 L 40 u a0uE 5' 02 -j 4E01.'IdLZ i
u0/N.I ow- I-i ou00It 0- l a- i

Z Q 0 ' . - 1 Nz- Z Z 7
1 U Q I zf-0

a z o o ir O U IC c z 2 z 1 u 0 OWW M M M o z i038

.4-4-)

-j 0 O.J (3 0 IOO

0) Etl.Q Wo a WWWWCWL(LrIW

- - - ---- --- V

Ud

N 2 ,0 o .0 .01

- S-
ul -- -n -

I, In ?1 0 0A. a4-

u(A

I 0 W

I --

0 rd n

I((A Ud,

o9- w w w

VVV -j-VIo z

coo100>0000-4

I.- ICI 0W 0 4- l4-4-4-v

~.www- rrzrrr..Www

I ~ ~ w JI W L.L LLIIW

In V-WWQOWn~WW0000000 L LM M

39

OM O 0 -. 0 - 0 o 0 0.Q V

ij NrC n ca 3(i4 n
on vl -W LCIt ý ct rd

0CdCl0.0rd0.0~nt.0r onvv

Cd Cl) 0ý ~ ~Cl ' ? rd rd
w

0 ri m 0 v Ocdq 0 A l-q4 ,0(.10 C

Cl 0

00000000000000000 0000
00 .000000000060000 0000 t

ww

00000000000000000 0000
0 00000000000000000 0o0n

tn 00000000000000000 00001C

.j M o " vr4rMMPNC-6 C, M C ,0 0 0
" "0d 40WA0 ojg.r- c on

> U-.

000000000000000 000D
-1 00000000000000000 0000

c 00000000000000000 000.0

00000000000000000 0004

00000000000000.0000

* 00000000000000000 000.0
0O00OO00000000000 0000

- m00~rd-N~n !d0cim- trN Crdl

oo o o o o o o o 0.000

-J~c rd m1b-
Wno 0 4 0J.L

u-
W I E a~ f X)(Nzn ~ t

-. -, 1- 0- 0- 0.- 0- W

10. 27 z2 :1

AK I~ww r, 14 I.-. ijIjii
.0 n d C a~~oo : . CLQorju :

Z-W3 41
42 - 0a a Qw Q 41Wiw La

"4A
0000000000000000000010

koo

w o. a, . - 4, cp i lilt Ii cd4.4

mliIt 1111 1 ti le 1

0 00000000000000000000o
660000000O-0O---- o0o-o

4S 8

z avvvý~~ 0UI

Zzz 0 L.--.i;

4.~ ~ - -C Z Z

Zw a 00 0

0000 W2

cam~ew-i- a--. >>>O----

I ý I 6zw

Le -j-4 00 0
w 0 ')D : 0 0 0 D J.-C l4 0i :)Z)

12 rxo~eu~r-
.j

41

OLD/NEW STANDARDS
MASTER FILES FILE

ir
SELETIONREPORT

Figure 3-16. SYSTRUCT Data Flow

4

m -:

p 42

all standards defined in the software standards file which have been
violated by that module are listed. The value of the standard
calculated for that module is shown, along with the permitted range of
"the standard.

b. Software Standards Violations Summary Report (see figure 3-14). For
each standard defined in the software standards ftle, the number and
percentage of modules which met that standard are shown, and the number
and percentage of modules which violated that standard are shown. Ad-
ditionally, the quality values are summarized for all the modules and
listed individually for each module (see figure 3-15).

3.3.4 SYSTRUCT. SYSTRUCT provides analysis of system configuration changes.
Figure 3-16 shows the data flow between SYSTRUCT and the rest of the PFA system.

SYSTRUCT reads two master files representing different versions of the
software system under analysis. The SYSTRUCT report lists changes in variables
used by each module, changes in software quality parameters (the ones reported
by SOFTPRO), and modules which have been added to or deleted from the current
version of the software being analyzed. The changes are of two types: those
affecting executable code and those affecting code documentation. When changes
affect executable code, a selection file containing a list of module changes is
generated for use by PATCHANA.

3.3.4.1 SYSTRUCT Input Requirements. SYSTRUCT requires two master files as
input, one for each version of the program to be analyzed. See paragraph 3.2.3
and appendix B for the master file description.

SYSTR UCT also requires a standards file for the standards file description.
A description of the file and its layout is given in paragraph 3.2.3 and in ap-
pendix B.

3.3.4.2 SYSTRUCT Initiation Procedures. Following is a description of a SYS-
TRUCT terminal session.

SYSTRUCT may be run from any interactive terminal connected to the VAX. As-
suming that the user has logged onto the VAX with the correct password, he can
run SYSTRUCT by entering the following command:

$PFA
Trespond to menu prompt for SYSTRUCT)

SYSTRUCT will then prompt the user for the following information:

COMMAND/RESPONSE EXPLANATION

ENTER OLD MASTER FILE NAME, WITH The entered old and new master file names
EXTENSION are the names of the master files for
MPLD.MST the old and new versions of the programs
ENTER NEW MASTER FILE NAME, WITH to be analyzed.
EXTENSION
MNEW.MST

43

COMMAND/RESPONSE EXPLANAT ION

ENTER REPORT FILE NAME The entered report file name is the name
M.REP of the disk file to contain the output

SYSTRUCT report.

ENTER STANDARDS FILE NAME The entered standards file name is the
M.STD name of the standards file to be ref-

erenced during this run.

ENTER SELECTION FILE NAME: The entered selection file name is the
M.SEL name of the disk file to contain the out-

put list of modules having probable code
changes.

DO YOU WANT STRUCTURE CHART? If requested, a structure chart for the
YES new version of a module will be output in

the report on each module.

SYSTRUCT will then complete the report generation with no further prompts.

3.3.4.3 Files Used in SYSTRUCT Processing. No temporary files are used.

3.3.4.4 SYSTRUCT Recovery and Error Correction Procedures. In the event of a
hardware error which terminates the program, the user must start the program
from the beginning. In the event of a fatal software error while running SYS-
TRUCT, the user should check to make sure all files exist and are not attached
to another program, and rerun SYSTRUCT.

3.3.4.5 SYSTRUCT Limitations. No limitations are known.

3.3.4.6 SYSTRUCT Sample Outputs. Figure 3-17 presents a sample porticn of a
SYSTRUCT report. This report shows, at module level, differences in subroutine
calls, number of paths containing subroutine calls, and software quality metrics
between two versions of a system. The report consists of a series of mini-
reports, one for each module which has changed between versions. Each mini-
report has two to four parts. First, the report begins with a header line con-
taining the module name, description, and starting page numbers of both versions
in the encoder listings. Second, the report contains an optional structure
chart, similar to the STAMP structure chart, for the new version of the module.
Third, the report contains a list of the differences between the versions of the
module. The list is headed by the version information for the old and new mod-
ules. The list contains common, added, and deleted subroutines if changes in
subroutine calls have been made, and software metrics with values that differ
between versions. Fourth, the optional last line in the report describes the
probable level of change in the module. If a software code metric value has
changed, a code level change is indicated; if a software documentation metric
value has changed, a documentation level change is indicated.

3.3.5 PATCHANA. PATCHANA performs software patch (source code change) anal-
ysis. Figure 3-18 shows the data flow between PATCHANA and the rest of the PFA

- system.

44

UL I CL C

o -I - I

a.~~ 0.I0.

(2IL * z I - S

9L I W o

I6 I1 IL 2(

IL IL1 .- L C
I IC

0 I z
Q II z.I=

II
wo0 I 0 a I I 2

00,I 'Ic (21 IICa W0 00 0
xu CL ,

I Ic
2C z J I -Z

(21ý I

CL C w Qasa C I I-a. L I .

j b " I " I _j 0. u

Q a j I w I

w Zz ar wa a z Li Q

- 0 Ij I- Q.. -'A*C

: zW W IiI .
J - _j -*

I A j C 4c WI Z IA I Ij 1 Ic J
3 we-w II ai

IL~IL'a~u in 9L r~
in. U 0 .

w'~~~~ 45 mI Z Iqr*~ II Z ~ z

LAJ

0

LULJ L

C-)

C'-

46i

PATCHANA reads two master files or subsets of master files representing two
versions of the software being analyzed. Selection can be made interactively or
via the selectior file, which contains a list of modules to be compared. The re-
port lists the path segment structure for both versions side by side and
indicates (with codes and arrows) the location of differences and what was
changed for each version. When structural differences occur, the differences
are flagged from their start either through the remainder of the module or to
the point where the structures of the two versions are congruent. PATCHANA
finds differences in structure, subroutine calls, variable usage, and the three
quantifiers.

3.3.5.1 PATCHANA Input Requirements. PATCHANA requires as input two master
files, or subsets of two master files, one for each version of the system to be
analyzed. See paragraph 3.2.3 and appendix B for the master file description.
If a subset of a master file is used, it must contain the data for all the mod-
ules to be analyzed.

PATCHANA also requires as input a list of modules to be analyzed. This list
may be entered interactively, as described below, or the list may be input as a
selection file, as described in paragraph 3.3.3.

3.3.5.2 PATCHANA Initiation Procedures. PATCHANA may be run from any inter-
active terminal connected to the VAX. Assuming that the user has logged onto
the VAX with the correct password, he can run PATcHANA by entering the following
command:

e $ PFA
(respond to menu prompt for PATCHANA)

PATCHANA will then prompt the user for the following information:

PROMPT/RESPONSE EXPLANATION

ENTER OLD MASTER FILE NAME: This is the name of the subset of the
MOLD.MST master file containing information on the

old versions of the modules to be
processed.

ENTER NEW MASTER FILE NAME:
NEW.MST New second master file to compare against

old first.

ENTER REPORT FILE NAME:
MST.LST Report file where the results of the

change analysis are stored.

3.3.5.3 PATCHANA Limitations. PATCHANA cannot process multiple entry points.

3.3.5.4 PATCHANA Sample Outputs. Figure 3-19 is a sample PATCHANA report.
This report shows path level differences between module versions. The report
consists of a series of mini-reports, one for each module. Each mini-report
consists of two parts, a header, and a patch comparison list. The header con-
tains the module name and description. The list consists of three sel;s of col-
umns: a description of the old paths, a description of the new paths, and a de-
scription of the differences between the two paths.

47

IIn InIm mo %
Ix I

Ir. (D00 0 4 ý N N7r- 3 MME -- 4 mcV

E ll a - - - - - - - - - - - -

I W I O~-.CIiWCN N * NnNAlN0 -
CL -- - -~nl~~ - - - ------ ----
I- I----

0 fl (fl I oo ooo 0 I. 000000 NOI-x

_iO000O000000000000000O0 0 000000 o000,

0 10oO0o0ooOO.0000000000 0 0 000000 0000Wc

(in -C 3 -- -0- - Nif N, rd 44ctcvtAON L-1 00

0-.O O' N 0.O M O- - n
.. . .I.00 .0.00 .0.00 .0.00 .0 .0 .0. . .0 . .00 .0 . .0 .0

;zz

4 CL 0- ==: -

En IA.-4 - .I N ~ I 4

-a 0
-- --I- -

a ý OWW

z I " "- I N- - - - -~ N 0"N"0 """ V aN NNN d C cu, NN P. N NrdNO .- a' n C\M1i

0-i 03a f0C-C0C44q~~i.- N M, qr4NMN-. O-mm~

(n z I0000N00000000-i N0ad u N 000 0
z 0 X

h in 0 xWI

.1 - In E

0 I-- -- -- ~ - ~ ~ -0-Ci it' .I C,.4t AA N n48a

The description of the differences between the paths is first. The de-
"scription consists of a series of flags indicating the types of differences
found. The flags are:

Q[1][2][3] Differences in quantifier(s) 1 and/or 2 and/or 3
P Difference in successor paths
N Difference in successor nodes
S Difference in subroutine calls
V Difference in variable lists

If no differences are found, this column will be blank. This description of
the differences between paths will be repeated for every line of the path de-
scriptions.

The description of the old paths is second, and the description of the new
paths is third. The descriptions contain the sane information and have the fol-
lowing format: Each description is headed by the version information for the
module being described. This header is followed by six subcolumns. The first
column contains the number of the path being described. The second column con-
tains the label and, in parentheses, the number of the from node for the path.
The third column contains the label and, in parentheses, the number of the to
node for the path. If requested, the second and third columns may contain -
source sequence numbers rather than labels. Columns four through six contain
the values of quantifiers 1, 2, and 3, respectively. Following the column
information for each path, the path description contains a list of the sub-
routines called in the path and a list of tne variables used in the path. Each
variable entry in the variable list consists of the variable name followed by a

WA- colon, optionally followed by variable type, followed by a colon, followed by
variable use. The variable use entry must be one of the following:

D Defined
R Referenced
T Tested
M Modified

3.4 Utilization of System Outputs.

3.4.1 STAMP Reports.

a. The external procedures report (figure 3-7) lists subroutines which are
called but are not part of the software being analyzed. These sub-
routines are usually a part of libraries supplied with the operating
system or compiler for the syst.em being analyzed. If subroutines are in
the list, and should be in the software being analyzed, then those sub-
routines are missing.

b. The structure chart (figure 3-8) shows the subroutine call hierarchy,
starting from task or program level (level 0) through each level of sub-
routine call to the lowest level. The subroutines called by the task
level prograns are level one, the subroutines they call are level two,
etc. Each level is shown on the chart indented to the right of the
higher level. The subroutine name is given and, as an option, a brief

* description is given. External subroutines and recursive subroutines
are marked as such.

49

/

c. The function list (figure 3-9) lists the highest level procedures in
the software under analysis, i.e., at the program or task level,
procedures which are not called as subroutines.

d. The module list (figure 3-10) lists all procedures and entry points in
aiphabetical order. The columns in the report are procedure name,
task/subroutine flag, page, description, top call level, bottom call
level, and version information.

The procedure name contains the name of the task, subroutine, or entry
point. The task/subroutine flag shows an "S" if the procedure is a
subroutine, a "T" if the procedure is a task or is not called by an-
other procedure, or an "E" if the procedure is an unused or uncalled en-
try point in a module with multiple entry points. The page and de-
scription are supplied by the master file, as determined by the encoder.
The top call level is the highest level on which the procedure is
called. This is zero for a task or unused entry point, one for
procedures called by them, etc. The bottom level is the lowest level at
which a subroutine is called. Again, tasks and unused entry points have
a level of zero. Procedures which have little or no difference between
top call level and bottom call level are most likely a "single use" or
"limited use" routine. If there is much difference between the top call
level and the bottom call level, the procedure is more likely a utility
routine. The version information is taken directly from the -iaster
file.

e. The HIPO chart (figure 3-11) gives detailed information about each
procedure. "Subroutine Definition" or "Task Definition" heads each
procedure listing. This is followed by the procedure name, short de-
scription, page, and version information, all of which are extracted
from the master file. These are followed by a list of modules calling
the procedure; this is not shown if the procedure is a task. Next is a
list of modules called by the procedure; this is only shown if the
procedure makes subroutine calls. Next is the list of entry points (not
shown on example). This list is produced only if the procedure contains
multiple entry points. The prologue copied from the master file fol-
lows. Then, the inputs column lists the variables which are referenced
(but not modified) by the procedure. Variable type information is
inclu'de7. Next, the processing column has a description of each path,
using both labels produced by the encoder, and sequence numbers from the
orig*nal source as processed by the encoder. This allows the user to
see how the structure represented in the processing column relates to
the original source code. The processing column also contains comments
extracted from the original source by the encoder; quantifiers, which
are quantities such as time, statenent counts, etc.; and a list of sub-
routine- called on each path. Finally, the outputs column lists all of
the variables, with their variable type information, which are modified
on each path. The inputs, processing, and outputs columns can be used
to check the HIPO charts in the Program Design Document CPCI's for ac-
curacy.

50

3.4.2 SOFTPRO Reports.

a. The SOFTPRO detailed report (figure 3-13) lists each procedure and the "
standards it violates. First, the name of the proceduwe, description,
version Information, and page number are extracted from the master file
and printed. Then the software quality metrics for the procedure are
compared against the software standards and the violations are listed.
The first colunmn of the list of violations contains the description of
the standard. The next column contains the value provided (or
calculated) for the software being analyzed. The next column has the
"permitted range," which is the range of values which the value pro-
vided for the software must fall within to meet the standard. Finally,
there is a reference to the document containing the standard (where ap-
plicable).

b. The SOFTPRO summary report (figure 3-14) summarizes the violations of
the standards. The first columni contains the description of the
standard. The next column contains the number and percentage of
procedures which met each standard. The next column contains the number
and percent of procedures which violated each standard. The last column
provides a reference to the document containing the standard. Ad-
aitionally, the quality values are summarized for all the modules and
listed individually for each module (see figure 3-15).

3.4.3 SYSTRUCT Report. The SYSTRUCT report (figure 3-17) shows differences in
subroutine calls, variable usage, and softwa.'e quality metrics between two
versions of the software under analysis. First, the nare, description, and page
number of old and new vcrsions are p- ̀ ted. If the option for new structure is
set, a structure chart similar to the STAIP structure chart is printed for the
structure of the new version of the procedure. Next a header is printed; this
contr'is the version information for the old and n~w versions. If changes in
subroutine calls are made, the subroutines called which are conpon to both
versions are listed; then the subroutine calls which have been added or deleted
are reported. Next, the software metrics for which values have changed are re-
ported. There is also a flag with each metric to associate it with either a
change in executable code or a change in program documentation. A change in ex-
ecutable code supersedes a change in program documentation. The probable type
of change or "no change" is flagged upon completion of each procedure.

3.4.4 PATCHANA Report. The PATCHANA report (figure 3-19) lists the structure
of0two versions of a procedure side by side and shows where differences are.
First t::e name and description of the procedure are given. Then a header con-
taining the version information for the old and new versions of the procedure is
printed. Thie rest of the report is in three sections: the change indicator,
the old version, and the new version. The change indicator can flag either a
structural change or a change in attributes for the particular path. A
structural change is flagged by a "P" for peth or an "N" for node, where the
change is a change in the execution path due to brancls being added or deleted.
A change in attributes for a particular path is a change in the subroutines
called, variables used, or one or more of the quantifers changed. These changes
are flagged by "S", "V", or "Q" followed by the quantifier numbers. The old and

"- new version sections have the same format--the path number, and path segment
description followed by the values of the three quantifiers. If subroutines are
called, they are listed on the next line.

51

APPENDIX A

TERMS AND ABBREVIATIONS

A-1

TERMS AND ABBREVIATIONS

COMPRO Comment Processor.

DEC Diqital Equipment Corpcration.

DECUS DEC User Society.

Encoder A program which reads the sou'ce code for the system
being analyzed and creates a master file for use by
other PFA programs.

External procedures Procedures which exist outside of the software being
analyzed, e.g., operating system utilities.

HIPO Hierarchy plus Inputs, Processing, 3nd Outputs.

HIPO chart A chart relating inputs and outputs to the processing
algorithm which uses or creates them.

MACROSPITBOL A SNOBOL4 compatible interpreter f'r the VAX.

Master file The file which contains a representation of the
attributes of the software being analyzed.

Module A separately compilable procedure or .;ubroutine.

Node A point of decision in execution path selection.

PATCHANA Patch Analysis Prngram.

Path A segment of instructions which does not contain any
branches.

PFA Program Flow Analyzer.

PFALIB PFA Library.

Program structure Graph of the sequence of all possible paths which may be
executed within a program.

Quantifiers A value which quantifies or tatals some attribute on a
path.

RATFOR/RATFIV A structured FORTRAN translator.

SOFTPRO Software Profile Program.

Software patch A change in source code.

Software system Consists of one or more computer programs which perform
one or more related functions.

A-2

TERMS AND ABBREBIATIONS (Cont'd.)

STAMP Structure, Timing, Analysis, Modeling Program.

Standards file File which contains user-entered standards in a
prescribed format.

Structure chart Shows a subroutine call hierarchy in the form of a tree

graph.

SYSTRUCT System Structure Comparison Program.

TECOM Test and Evaluation Command.

USAEPG U.S. Army Electronic Proving Ground.

-.. .. - - -. -...-. . - ---•7.....-

APPENDIX B

MASTER FILE

AND

STANDARDS FILE DESCRIPTIONS

B-1

DISK/TAPE RECORD LAYOUT
RECORD TYPE

SYSTEM: PFA
MODULE NAMEU NFILE:

MASTER FILE

RECORD TYPE: 0 *

10

MONTH
15 50

DAY
.. MODULE DESCRIPTION,

A YEAR CONT.

SHOUR

MI NUTE

MODULE DESCRIPTION

*

P.0

Figure B-I. Library Routine Definition

B-2

/

"DISK/TAPE RECORD LAYOUT
RECORD TYPE

SYSTEM: PFA

MODULE NAME
FILE: MASTER FILE

RECORD TYPE: 1 *

MONTH
15 50

DAY D MODULE DESCRIPTION,

YEAR CONT.

2U HOUR

MINUTE

MODULE DESCRIPTION

Figure B-2. Task or Subroutine Definition

p B-3

DiSK/TAPE RECORD LAYOUTRECORD TYPE

SYSTEM: PFA
PAGE NUMBER

_FILE: MASTER FILE

RECORD TYPE: 2 *

SOURCE SEQUENCE
TO NUMBER

T'5" 50

VERSION INFORMATION VERSION INFORMATION,
CONT.

T5 •

Figure B-3. Listing and Version Definition

B-4

"O DISK/TAPE RECORD LAYOUT
SRECORD TYPE

SYSTEM: PFA
PROLOGUE COMMENT

FILE: MASTER FILE

RECORD TYPE: 3 *

__ 50

PROLOGUE COMMENT,
CONT.

W-0

Figure B-4. Prologue Comments

B-5

DISK/TAPE RECORD LAYOUT
RECORD TYPE

SYSTEM: PFA
.•.. mFROM NODE LABEL

-F N FILE: MASTER FILE

RECORD TYPE: 4 *

TO

TO NODE LABEL

T5 50

QUANTIFIER 2

20 QUANTIFIER 1 55

QUANTIFIER 3
- START SEQUENCE

_ NUMBER

75 7

END SEQUENCE
NUMBER

BRANCH SEQUENCE
NUMBER

Figure B-5. Path Definition

B-6

DISK/TAPE RECORD LAYOUT
RECORD TYPE

SYSTEM: PFA".'-. FROM NODE LABEL" O D FILE: MASTER FILE

RECORD TYPE: 5 *

TO NODE LABEL

T5 50

SUBROUTINE CALL
__________________LIST, CONT.

C O N T I N U A T I O N F L A G

20
SUBROUTINE CALL

_ LIST

7 7U

W40

Figure B-6. Subroutine Calls Informacion
50

B-7

x/

R TDISK/TAPE RECORD LAYOUT
-- RECORD TYPE

SYSTEM: PFA
FROM NODE LABEL

FILE: MASTER FILE

RECORD TYPE: 6 *

TO

TO NODE LABEL

50

VARIABLE LIST,
CONT.

SVARIABLE LIST

40

Figure B-7. Variable Information

B-8

DISK/TAPE RECORD LAYOUT
RECORD TYPE

"SYSTEM: PFAFROM NODE LABEL
3 FILE: MASTER FILE

RECORD TYPE: 7 *

TO NODE LABEL

_5 50

COMMENTS, CONT,

20 COMMENTS 5

4-0

T5

TO Figure B-8. In-Line Comments

B-9

D!SK/TAPE RECORD LAYOUT
RECORD TYPE
.:. SYSTEM: PFA

"- SOFTWARE QUALITY
T PARAMETER 1 FILE: MASTER FILE

__RECORD TYPE: 8 *

- SOFTWARE QUALITY
10 PARAMET!R 2

SOFTWARE QUALITY
T PARAMETER 3 52

_ _ _ _ _SOFTWARE QUALITY53PARAMETER 11

SOF[WARE
QUALITY

T PARAMETER 4

SOFTWARE QUALITY
SPARAMETER 12

SOFTWARE QUALITY
5 PARAMETER 5

_ _SOFTWARE QUALITY
65 PARAMETER 13

- SOFTWARE QUALITY

_ _ _ _ _ _ _ _ _ _ _ _ _ S O FT W A R E Q UAL IT Y 7 5 P R M T R 175 PARAMETER 1

SOFTWARE QUALITY
35AM PARAMETER 78

- SOFTWARE QUALITY
35 PARAMETER 8

SOFTWARE QUALITY
TO PARAMETER 9

SOFTWARE QUAL ITY

50 PARAMETER 10
Figure B-9. Software Quality Information

B-10

. - . -. -/

DISK/TAPE RECORD LAYOLUT
RECORD TYPE"- ~SYSTEM: PFA

.- ENTRY POINT NAME
FILE: MASTER FTLE

RECORD TYPE: 9 *

LINK
50

ENTRY POINT
DESCRIPTION,
CONT.

START NODE LABEL

ENTRY POINT
DESCRIPTION

W40

__ Figure B-10. Entry Point Definition

B-11

/

0ON

uj % ON

LU~ I % 0

cr -4 C C;

.aLLU CJ C C~. C'J C\j C'j C X 00 f 5* CD
LU5J N4 r
L- -n

H z (i.. . - I

>-* u C/) C-) fl... Lnj

V) - ý- > ->-.ý

C) VI C.-n

ocr < E -- ct CA
=.. LU ce-...

LU (11 <... IA.. a-U . C
- C C-) (CW C: C LL

La- <- V)IC ~ -. -~ '

-- =4.)C

4n 44 001

C-) Ln 0 C)
ui l Ln L"wC

C-O r- EnV

"04-)C)L L /

- ~a4) (A E0C).
L1 =.0 L- L c

ai. eu E C) % -
CL Ur a Q)) D ~
>) 0 0. >E ~

4-3 4' uEa

u. 0 3 eaC a- 4-) .4C

C ~ 4. .)~T~4) a a4- 'oU 4.3.1 E

C) 04- 0 0 0 0 0 04L M. 4- C..:*r DCL a
0. C I E. 0C C:) 0 ' C)'

C)

o a'

a) C-
e- C)-0 a

C) C) C) 4-

cu aE 0- :m 4 c 0 C..
LLJ 0 G L .0 (A

m e 4-0 n CA .4-) C

<I ea 0 iC 0 0. Oc) e 0 G)

C ~ ~ . CB -120

0 0

L~~~- 4-0% 0 L)

0- 0U aa c% a

00 0ý L- 0% 0% L- L. 4-J -W

a.) % 0%0 000C -C

r= .1 E. ONJ n 4J 0%&0)~~I~ I ~ r_ w a w 0 O

LLJ 1-400

-l 0- CL..

o C) 0. cC CC <C c

o ~ o C C C Ci cn

CA 0. Ln a-. -3

Lui co~ < CC C.7 C' Cc(M0 4< 0 w U) U LU C

-F- LL. a-- 0' V) un CA 0 0 C-)

-J

LU):
uJ ((Va)a

4 0 .4-0) (A 4 0) a. "0 .- a .- La _g-
-- aO a- (aC d) = J. Q) 4-+) 4-j 4-

C.U. c0 (a.d =4J C30 L 0 'U ..
OL. C- t7- (a~ C- 0) L 4-+-) '41 .Aa)L

0.0.C 0)010 4J C) 06 ai Q) C

V- (U) In4 4--)0) 4-J UC
ee W-. 0a '.O A 0 0'0
4J4)4)0 a 4)lU a- C Cd u0 ~ 0* -;

u) 4 E=L (a c C Cv 00

0E 0o -41 C- ojW 4-) 4- o a
C Ca) .L- 0 O af 00 OUI ear 05 u 05 U~>,

IU0 0)w. 0. IA V) (0.0 0.0 - *.- 4.
Lu) > tl .OC 4- 4-- t,_~ L. L- " a0) 41

-i (.- .- 0- -oa '-4- - 4 C C0.Co(A
cm .o eu to m - 0 L. co .- >1=

<C Ln c. C CC CW CL CUI0 w 4-3r.
eo 0 w~4.. 0 00 00 0W 00)- oa- a

CU 00. f- u -. 0 -a .-- .-0-) *- 0 - .- 0 (A~. O
-0 M' 4-) +4) = 41E 4J EC 4-)L .4-J f-U) C0
M 04-. 4-). 0. 0.3 CL : 0. 0 CLO mo a CLCea

C. _.j0 Y.~ 0 CC CC CCm. r) a CD >. LL. 4-3u0.

a)) I~

0)0
c) d)4-

4-) 4J U) a) 0-
0) 0) -0 .0 -0 0)m0

'x to r= -o
0 m) 4-M 4-J r- 4-
=I 0)L .CLj '. '- CA w

B-13

L

LU I

'4-

L,?- L) 1.i U)J 0- .1C' -
-- - >-) r

-- Lm M=o L

C) I- c -LA -c =V) cc -j coC-)e-Z
0.J u . CL L CZ <

ad Q. * - .) - 4.3 a

tA ~ ~~ L0 Q)- 4--J= u" %

U .- M W 0) 0 LU W > CA
M 0. CL (D :- =L L- L.

to CL 1 v () -41 41
u- 4- w 0 i)4 .2c -4 C CA L.U .

CA < (v L 0+ 4)L (u c f

41~C- .0> W - . - C) j C

a - a ---- a >0 L-
WIC ai 4~) C (U .0M. .) - .m 1

= Lv m Q) .1) 0J .
LAJ *'. > -d 03 L >% O > m Iato ut o "

LL -c Cdl * L O4 - (U.41 +IV -L-- -L %-4 i.

-- 4. ' Q. 31 ca.. aW- 0 CA 0) M
0J d) 0030- L.'03 Ed q00)

'U-m 0.0 - Lfa Lm-C a' fa *

C2 ea- 4j ~ t3 >U (L 0J 0 06 >C

U'J 0) cWL V .O L *0 '

(UJ 4CU cuC>U O C dJ.

fU GJ 'U 3L >>> 0. 0 '
Lii '4-C0. '4 C.- -E-03 -03 -)J q~4B'a14

cm

w r-.di Q

cn

ou u

Li, LfJ.
cit CMLi j

-AJ

LiJ

U-

LA. @

0

Lii
V

4.1

4a

Lj

UC 3B1

DISK/TAPE RECORD LAYOUT
IDENTIFIER

SYSTEM: PFA

FILE: STANDARDS FILE

DESCRIPTION

VALUE OR
CALCULATION

WEIGHTING FACTOR

CODE/DOCUMENTATION
INDICATOR

LOWEST PERMITTED
VALUE

STANDARD REFERENCE

HIGHEST PERMITFED
VALUE

Figure B-11. Software Standards File Records

"B-16

4O 4J 4J)c
0. 0. L

a0 W =3e
CL 10 u-

(-30

o CD
uO 0 u -- 90

u (Dtz: - LU.

(4 En Ln 9- >- En-
>- >LLJ C.L.) -Ul

=LA =A <>. L L

m- < LLJ t;; &UJ -0 <-:C0 L9-i -~ Kj CD~E CA

V.)

oa- CLa u
0A - IC IA
0A %-4- 4- .6) 1 4-

-1 0.J to 41~ I- ~ ~ d-c - t- L-'- 0.S O
CVA 416ý - 0 0. *,a .C- v: C-C

*- 041 O U 4 4hO S C i
4.J0~~~d = m - - - -0+..* C

0A (-4 0. m m 4j &0- 1i0 4A C m(U.Ci'- l - 0m c 4n m - W e I r

4- 41 (A. 0 t 41CA% f M- CL f L fa f- U 430 C- = o03

*~IEu in -Z -W a)- Cl ~ 0f 0 c -
a 43A44 33 V .0 .0 IA L. ."43 .-.-Uo 4)4 'a 3 >.mi "0 M go 4.1 LL- .0 a U' u 4j a%

4.J J .4.1 0- ig to 4.1 C. 0 00 a CM'. 44
u 410 (U '4 d)-'0 41 CL 0 #.. 4....4-13)'a.#0 CAn .C 4 C =n 4 3 a 9V.) 'U 00 - 4* (A~ft-..0 - 4. Q 'a (U a a3C ~ C~4 ~0' . V 4.1 f.. *l 4J (A M MCS39,0 4A> d) 43 'a U L. 4 41A

9- U' 44 1- -C 43 (U(Z4U1 ou *- .041 t 0
4j v- m~ C M C 414 Aj L. c > c u 4m '=00- .C4. %A 31 4.. C>f CA 4) 41C toV'a ~> 4- (aa (A 414 ~ 'U) BC 0A l. - w4 = cV4.4L4u x. 43m.
-0 4-- CA f0 = CL a c C CV L"0 43 03 .04.1 46-. a-a4 0 4.;V U 0 C 41 C r. U L. (1 4-)L- 04(3c 10 L CI. -c 4-U 41 -a C 0- 4aa .3.043lb. 41 0 41 UI. V4.6CI.a U. LV

0. 4) #A 43C 0 *a C 3

L'S -to 00 43 1f mn L . 'a 'A1 4. -L.l *- C03VI-34 43 o C C L 40- t 'An IA 43 (A ()dCD a4) wl L. 4' 4A' '0 Ca- "~a43w.-.. LU- '-4
= C 1 =AJ~ C5 - La. 0 4.j c- 4) x 41 = 'a fl... A

V 41
43 4.1 m

41.4.1 0

C ~C
0 @1 0

cu C. 0." (

4. t- 41 cm OC)-
u c.s 4.j 44 ca-. ca.4

W3 to' Ci a #a 0' 41 IVB-Aic

APPENDIX G

PROGRAM4 MAINTENANCE MANUAL

G- 1

PROGRAM FLOW ANALYZEt(

'- PROGRAM MAINTENANCE MANUAL

JANUARY 1..984

FOREWORD

Ultrasystems Technology, Incorporated, Sierra Vista, Arizona
assisted in the preparation of this document under

Contract Number DAEA18-83-C-0003.

Ii

TABLE OF CONTENTS

VOLUME I

PA e

SECTION 1 GENERAL DESCRIPTION i
1.1 Purpose of the Program Maintenance Manual 1

1.2 Project References 1

1.3 Terms and Abbreviations 1

SECTION 2. SYSTEM DESCRIPTION 2
2.1 System Application 2

2.2 Security and Privacy 2

2.3 General Description 2

2.4 Program Description 2

2.4.1 Encoder (AUTOxxxx) 2

2.4.2 Comment Processor (COMPRO) 9

2.4.3 Structure, Timing, Analysis, Modeling Program, (STAMP) 5
2.4.4 Software Profile Program (SOFTPRO) 5
2.4.5 System Structure Comparator (SYSTRUCT) 6
2.4.6 Pe.tch Analysis Program (PATCHANA) 6
2.4.7 PFA Library Routines (PFALIB) 6

SECTION 3. ENVIRONMENT 8
3.1 Equipment Environment 8
3.2 Support Software 8
3.3 Data Bases 8
3.3.1 General Characteristics 8
3.3.2 Organization and Detailec' Description 9

SECTION 4. PROGRAM MAINTENANCE PROCEDURES 28
4.1 Conventions 28
4.1.1 Nlaming Conventions 28
4.1.2 Commenting Conventions 28
4.2 Verification Procedures 33
4.3 Error Conditions 33
4.3.1 COMPRO 33
4.3.2 STAMP AND PATCHANA 33
4.3.3 SOFTPRO 33
4.4 Special Maintenance Procedures 34
4.5 . Special Maintenafice Programs 34
4.6 Listings 34
4.7 Software Failure Report Summary 34
4.7.1 Overall PFA 35
4.7.2 STAMP 3b
4.7.3 PATCHANA 35
4.8 Future Program Improvements 35
4.8.1 Master File 35
4.8.2 STAMP 36

iii

APPENDIXES

Page

A. Terms and Abbreviations A-1

VOLUME II

B. HIPO Charts B-I

C. Structure Charts C-1

0. Procedure File Listings D-1

E.. Program Listings E-1

iv

LIST OF FIGURES

Figure Page

2-1 Structure of the PFA System 4
3-1 Library Routine Definition 12
3-2 Task or Subroutine Definition 13
3-3 Listing and Vprsion Information 14
3-4 Prologue Conemnts 15
3-5 Path Definition 16
3-6 Subroutine Calls Information 17
3-7 Variable Information 18
3-8 In-L ine Comments 19
3-9 Software Quality Information 20
3-10 Enitry Point Definition 21
3-11 Software Standards File 25
3-12 Software Standards File Records 26
4-1 A Samole PFA-Commented Source Program 29

LIST OF TABLES

Table

3-I Master File Field Descriptions 22
3-11 Scandards File Field Descriotiors 27

v

SECTION 1, GENERAL DESCRIPTION

1.1 Purpose of the Program Maintenance Manual. The objective of this Program
Maintenance Manual for the Program Flow Analyzer (PFA) system, TECOM Project
Number 7-CO-RDO-EP1-004, is to provide the maintenance programmer presonnel
with the information necessary to effectively maintain the system.

1.2 Project References. PFA is a software analysis system. It consists of
various programs which identify software quality, program structure, and
program features which aid or interfere with program maintainability.

PFA is sponsored by the U.S. Army Electronic Proving Ground (USAEPG) at

Fort Huachuca.

The following are PFA documents of interest to the maintainer.

USAEPG, Program Flow Analyzer Users Manual, 30 November 1982, UNCLAS-
SIFIED

USAEPG, Program Flow Analyzer Plan, 30 October 1982, UNCLASSIFIED

USAEPG, Methodology Investigation Propcosal--Program Flow Analyzer,
March 1979, UNCLASSIFIED

USAEPG, Program Flow Analyzer A-Level Specification, 4 April 1980,
- UNCLASSIFIED.

1.3 Terms and Abbreviations. Terms, definitions, abbreviations, and acronyms
are included in appenoix A.

SECTION 2. SYSTEM DESCRIPTION

2.1 System Application. PFA is a software tool used for automating the an-
aiysis of a software system to identify software quality, program structure,
and program maintainability. PFA performs the following functions:

a. Software documentation aid

b. Program structure analysis on the system level

c, Program structure analysis on the module level

d. Software quality analysis

e. Analysis of system configuration changes

f. Software modification analysis on the module level

PFA can automate review of design-level specifications and code, software
quality metrics, and comparison of different versions of software which are
normally performed manually. PFA generates reports that can be compared to
design specifications; this reduces effort needed to trace from code to design
specifications. PFA computes and compares software quality metrics to user-
selected software quality standards, thereby automating the software quality
assessment. PFA compares two versions of software, first an overall com-

-" parison and then a comparison of selected modules, and generates reports which
identify changes.

2.2 Security and Privacy. The PFA system is unclassified and is currently
set up to identify all output as unclassified.

2.3 General Description. The structure of the PFA system is presented in
figure 2-1.

2.4 Program Description. The following paragraphs provide a description of
the PFA programs: AUTOxxxx, COMPRO, STAMP, SOFTPRO, SYSTRUCT, PATCHANA, and
PFALIB. The encoder program (AUTOxxxx) is specific to the language/machine
combination being analyzed. Only details applicable to encoders in general
are provided here. The remaining PFA programs are generic in nature. HIPO
and structure charts for these programs are included in Volume I1, Appendix B
and C. PFA programs are written in MACROSPITBOL with the exceotion of
SOFTPRO, written in VAX FORTRAN.

2.4.1 Encoder (AUTOxxxx). The encoder is a front-end program to the PFA sys-
tem, which translates computer/software/language-specific programs into a re-
presentation which is stored in a data base called the master file. This
master file is then read by other PFA programs that generate reports. The en-
coder is customized for each application to accotwodate the specific
machine/language combination of the software being analyzed.

S2.4.2 Comment Processor (COMPRO). COMPRO extracts and processes comments for
creating documentation. COMPRO reads program source code files that contain
comments in a specific format. The information contained in these comments is
used to crPite a master file that can be processed by other PFA programs to

2

generate reports used for program documentation. PFA programs are commented
in tnis manner to provide automated HIPO and structure charts for the PFA sys-
tem.

3

LAJ

Li.I u u-a

=-0 (=l I.- LL0 C)
= 1 ZLL =

C) Ll. Z..Lz

rn 1-

Cl.a

X: I- u-

in 0 >- LaJý

u-au

* - /

an -iU

%A.

I- .a u -

LAD w.U -

* 2.4.3 Structure, Timing, Analysis, Modeling Program (STAMP). STAMP provides
the program structure analysisfunction. The STAMP program reads the master
file and generates overall reports on the system under analysis to aid in mod-
eling that system and to provide information about the structure ot that sys-
tem. STAMP provides five reports, as follows:

a. The external procedures report lists each module which calls sub-
routines outside the set of modules being analyzed and the namt of the sub-
routines called.

b. The structure chart shows the module call hierarchy of the system and
flags external and recu-sive subroutines.

c. The function list provi:; a list of all task-level modules in the
system, with the name of the module, a brief description, and version informa-
tion.

d. The module list contains a directory of the modules being L-ilyzed,
arranged in alphabetical order. It also contains an indicator to signal
whether the module is task level, subroutine level, or an unused entry point;
the top and bottom hierarchical level on which the module is called; a brief
module description; the version information; and the page number of the
source listing where the module is located.

e. The HIPO chart lists the name of the module, a brief module de-
scription, the version information, the page number of the source listing pro-
logue comments, And the variables input and output. The processing de-
scription in the HIPO chart includes the path segment structure of the module.
Each path segment contains the names of modules called, comments about the
path, three quantifiers (discussed below) and the sequence number range of the
source statements which make up the path segment.

The quantifiers are user-selected values (determined by the particular en-
coder used) extracted from the software being analyzed. Examples are ex-
ecution module timing, source statement counts, and machine instruction
counts. Those items which are not available do not prohibit processing. The
STAMP program will report on the information available.

2.4.4 Software Profile Program (Se-TPRO). SOFTPRO provides the software
quality analysis function. SOFTPRO reads the master file and a software
standards file and generates two reports, as follows:

a. The software profile reports for each module list the violations of
software standards as defined by the user in the software standards file. The
violations state the standard, the value for the software oeing analyzed, the
permitted range of values, and the reference to the regulation from which the
standard is derived.

b. The profile summary contains the list of standards, the number and
percent of modules meeting each standard, the number and percent of modules
violating each standard, and the reference to the regulations containing each
standard. Additionally, quality values are summarized for all modules and
listed Individually for each module.

5

* 2.4.5 System Structure Comparator (SYSTRUCT). SYSTRUCT provides analysis of
* system configuration changes. SYSTRUCT reads two master files representing

different versions of the software system under analysis. The SYSTRUCT report
lists changes in variables used by each module, changes in software quality
parameters (the ones reported by SOFTPRO), and modules which have been added
to or deleted from the current version of the software being analyzed. The
changes are of two types: those affecting executable code and those affecting
code documentation. When changes affect executable code, a list of the mod-
ules changed (selection file) is generated for use by the patch analysis
program.

2.4.6 Patch Analysis Program (PATCHANA). PATMANA provides a software patch
(source code change) analysis function. PATCAANA reads two master files or
ý.ubsets of master files representing two versions of the software being an-
alyzed. A selection file which contains a list of modules to be compared is
also read. Selection can be made interactively or via the selection file
created by SYSTRUCT. The report lists the path segment structure for both
versions and indicates (with codes and arrows) the location of differences and
the type of change for each version. When structural differences occur, the
differences are flagged from their start either through the remainder of the
module or to the point where the structures of the two versions are congruent.
PAT04ANA finds differences in structure, subroutine calls, use of variables,
and the three quantifiers.

2.4.7 PFA Library Routines (PFALIB). The PFA library routines are
MACROSPITBOL routines that are used by the various PFA programs. The following
routines constitute PFALIB:

CENTER returns a given string centered within a string of given length.

CLS clears the terminal (user's) screen.

DECR decrements the argument by one.

DTOO is used to convert decimal numbers into octal numbers.

ENDOUT. prints the 'UNCLASSIFIED' caveat on the last page.

ENTER returns the next dvailable channel number.

FIELDI extracts a string of characters of a given length from a larger
string of characters, starting at a given character position. It also
trims leading and trailing blanks from the string it returns.

INCR increments the argument by one.

INIOUT performs initialization for OUTOUT.

ITMCMP determines if an item is in a list.

LIST returns an item at a specified index. If the given index is greater
than the index of the last item in the list, the last item is returned.

LSTADO adds a given item to the end of the list.

6

LSTDLN deletes an item at a given index from d list.

LSTDLS deletes all occurrences of a Oiven item from a list.

LSTFND returns the index of a given item in a list.

LSTGET returns the item at a given index from a list.

LSTINN inserts an item at a given index in a list.

LSTINS inserts an item before another given item in a list.

LSTLEN returns the number of items in a list.

MAX returns the maximum of two real or integer nubers.

MIN returns the minimum of two real or integer numbers.

NODUP deletes duplicate entries from a list.

OCTBIN returns a binary representation (ones and zeros) of a given octal
number.

OTOD returns a decimal representation of a given octal number.

OUTOUT outputs a given line and provides the 'UNCLASSIFIED' caveat, page
numbering, and header at page breaks.

PAD returns a string of blanks of given length.

PRETRM trims leading blanks from a given string.

REWIND rewinds a file on a given channel and releases variables tied to
that channel.

ROUND returns a given real number rounded to two decimal places. It does
not affect integer numbers.

STROUT takes as many as the given number of characters, as delimited by a
comma, from a given string and places them on the returned string. The
input string is shortened by the number of characters in the returned
string.

SWAP swaps the contents of two variables.

7

SECTION 3. ENVIRONMENT

3.1 Fquipment Environment. PFA is currently implemented on a DEC VAX/VMS,
nmodel 11/780. PFA software is resident on disk; software to be analyzed is
input via nine-track tape drives.

3.2 Support Software. PFA currently requires the following DEC software:

a. VMS, Version 3.0 or later

b. VAX FORTRAN

The following software from other sources is also required:

MACROSPITBOL, available from DEWAR Information Systems, Inc., 221 West
Lake Street, 'Jak Park, iL 60302

3.3 Data Base. PFA uses two data files, the master file and the standards
file. The master file tontains condensed/summary information on the program
to be analyzed. It is used by STAMP, SOFTPFJ, SYSTRUCT, and PATCHANA to an-
alyze and report on program structure, maintainability, and software auality.
The master file may be edited by using the system editor.

The standards file contains information on software standards. It is used
by SOFTPRO to calculate and report standards violations and by SYSTRUCT to
identify software quality measures which have changed between two versions of
the software being analyzed.

3.3.1 General Characteristics. The following are the general characteristics
of the data base files:

3.3.1.1 Master File. The master file is created by system-specific encoders
(AUTOxxxx and COMPIR). The master file filename is specified by the user at
run time. The user may specify any filename acceptable to the system, but, by
convention, the file extension is MST. The master file, or a subset, is used
by STAMP, SOFTPRO, SYSTRUCT, and PATCHANA to analyze and report on program
structure, maintainability, and software quality. Additionally, the master
file may be edited. The master file is read-only to all programs except the
editor, ALffOxxxx, and COMPRO. The master file is an ASCII sequential file re-
sident on disk storage. Records are fixed format, delimited by a carriage re-
turn/linefeed sequence, with a data length of 72 characters. The amount of
storage required varies with the application.

3.3.1.2 Standards File. The standards file-is created in two parts. First,
the developer of the encoder creates a file containing descriptions of the
basic standards, for which values are output by the encoder. Then, before run
time, the user adds descriptions of standards which are user defined in ternis
of the basic standards. The standards file filename is specified by the user
at run time. The user may specify any name acceptable to the system but, by
convention, the file extension is STO. The standards file is used by SOFTPRO
to calculate and report standards violations and by SYSTRUCT to identify
software quality measures which have changed between two versions of the
program being analyzed. The standards file is read-only to all PFA programs.

8

The standards file is a free format, ASCII, sequential file maintained on disk
storage. The amount of storage required varies with the application.

3.3.2 Or anization and Detailed Description. The following is a detailed de-

scription of the database files.

3.3.2.1 Master File.

a. Layout. Figures 3-1 through 3-10 show the layout of the master file.
Currently there are eleven record types in the files (a header type and ten
data types). The eleven record types contain the following information:

Type Information

- Header Record

0 Library Routine Definition

1 Task or Subroutine Definition

2 Listing and Version Information

3 Prologue Comments

4 Path Definition

5 Subroutine Calls Information

6 Variable Information

/ In-Line Cuiments

8 Software Quality Information

9 Entry Point Definition

b. Groupings and Order. Within the master file, all the records for a
module are grouped together. Within each module group, the records have the
following order:

(1) A header record of the form: "#-H- modname", left-justified.

(2) A type 0 or 1 record, as appropriate.

(3) A type 2 record and, optionally, type 3 records. The type 2 re-
cord may appear anywhere within this group.

(4) The path information records are grouped together by path and
include type 4, 5, 6 and 7 records. Each group defines a path. The de-
finition of a path includes the specification of a from node, or start point,
for the path. The groups are ordered so that the from nodes specified by the
groups appear in the master file in the same order the from nodes appear in
the program listing. The records within the path groups are ordered as fol-
lows: The optional type 4 record must appear first, followed by optional type
5, 6 and 7 records, which may be intermixed.

9

(5) Optional type 8 records, in order.

(6) Optional type 9 records which may be intermixed with type 8 rec-
ords and/or path groups.

c. Fields. See Figure 3-1 through 3-10 for the layout of the fields de-
scribed in Table 3-I.

3.3.2.2 Standards File.

The software standards file is used for comparing the software being an-
alyzed to specific standards.

a. Layout. Each record in the standards file contains eight fields, each
terminated by a semicolon.

b. Groupings and Order. The records in the standarw~s file may be in any
order.

c. Fields. A sample standards file is presented in figure 3-11. The
fields are defined as follows:

(1) Identifier. The identifier has two ranges:

(a) 1 to 14, basic standard taken directly from the cor-
responding field on the master file type 8 record.

(b) Any other value.

Range (a) specifies which item of the software quality record the standard re-
cord describes. Range (b) provides scratch records for calculations or con-
tains identification and calculations for derived or calculated software metr-
ics.

(2) String description. This is a brief description of the standard
(maximum of 40 characters) stated as the requirement needed (value) to
meet/pass the standard, for example: McCabe's complexity 10 (meets
standard)

(3) Weighting factor. This is an integer, zero or greater, which
gives a relative weight to each standard. Zero means the record is for
calculation only and is not reported. Numbers greater than zero rate the re-
litive severity of violating the standard; the greater the number, the more
severe the consequences of the violation.

(4) Lowest permitted value. If the value supplied (or calculated)
for the standard record is less than the lowest perr.itted value, the standard
is violated.

(5) Highest permitted value. I. the value 'supplied (or calculated)
for the standard record Is greater than the highest permitted value, the
standard is violated.

(6) Value or calculation. If the identifier is in the range (a)
above, then this field is left blank; otherwise, the field contains an expres-

10

sion used for calculations. The expression must be in reverse Polish n-Jtation
with a comma following each term of the expression. Terms which are enclosed
in parentheses are identifiers which are replaced by a value or calculation
from the standard record indicated by that identifier. Terms which are
numbers are used as constants in the calculations. The four arithmetic oper-
ators permitted are +, -, *, /.

(7) Code/documentat=in indicator. This indicator is "C" if the
standard affects source code specific to a programming language or "D" if the
standard affects program documentation contained in comments.

(8) Standard reference. This field refers to the document where the
standard is found.

See figure 3-12 for the layout of the fields described in Table 3-11. The
sizes of all fields are variable. Null fields are indicated by two con-
secutive semicolons.

d. Provisions for Expansion. There are provisions for 14 basic standards
with up to 30 total.

11

DISK/TAPE RECORD LAYOUT
RECORD TYPE

SYSTEM: PFA
.. :.MODULE NAME- NMFILE: MASTER FILE

RECORD TYPE: 0 *

TO"

MONTH
15 50

SDAY MODULE DESCRIPTION,

SYEAR CONT.

SHOUk 55

MINUTE

MODULE DESCRIPTION
25 60"

5_0 Figure 3-1. Library Routine Definition

12

DISK/TAPE RECORD LAYOUT
RECORD TYPE

"SYSTEM: PFA
MODULE NAME

5 FILE: MASTER FILE

RECORD TYPE: 1 *

MONTH1_5 b 0

DAY
A MODULE DESCRIPTION,YEAR -CONT.

2 HOUR

MINUTE

MODULE DESCRIPTION

7 r5

35 7-"0

4O

- Figure 3-2. Task or Subroutine Definition

13

O DISK/TAPE RECORD LAYOUT

SYSTEM: PFA
PAGE NUMBER

_FILE: MASTER FILE

__RECORD TYPE: 2 *

SOURCE SEQUENCE
10 NUMBER

T5 50

VERSION INFORMATION _ VERSION INFORMATION,
CONT.

T• 65-T

TO Figure 3-3. Listing and Version Definition

14

DISK/TAPE RECORD LAYOUTRECORD TYPE

SYSTEM: PFAPROLOGUE COMMENT
P O

FILE: MASTER FILE

RECORD TYPE: 3 *

I0

1 50

PROLOGUE COMMENT,
_CO NT.

0Z

TO

%-5

ITO Figure 3-4. Prologue Comments

15

,. REODDISK/TAPE RECORD LAYOUTRECORD TYPE
SSYSTEM: PFA-5 FROM NODE LABEL

SFILE: MASTER FILE

RECORD TYPE: 4 *

i0

TO NODE LABEL

1TE 50_ H
__QUANTIFIER

2

10 QUANTIFIER 15

75.

I QUANTIFIER 3
To START SEQUENCE 6•

NUMBER

Z7

END 3EQUENCE
NUMBER

40

45
BRANCH SEQUENCE
NUMBER

Figure 3-5. Path Definition

DISK/TAPE RECORD LAYOUT
-RECORD TYPE

SYSTEM: PFA• •>iFROM NODE LABEL
SFILE:

MASTER FILE

RECORD TYPE: 5 *

TO

TO NODE LABEL

75 50

_ SUBROUTINE CALL
LIST, CONT.

CONTINUATION FLAG
20 5

SUBROUTINE CALL
LIST

S3-0- 6-5

50 _Figure 3-6. Subroutine Calls Information

17

i

DISK/TAPE RECORD LAYOUT
RECORD TYPE
." " SYSTEM: PFA

"FROM NODE LABEL
-_ FILE: MASTER FILE

RECORD TYPE: 6 *

TOI _
TO NODE LABEL

U --
_ VARIABLE LIST,CONT.

20 VARIABL; LIST 55

25 6

i Vii

I -

T 50 Figure 3-7. Variable Information

*_ 18

O DISK/TAPE RECORD LAYOUTRECORD TYPE
SSYSTEM: PFA

FROM NODE LABEL
--_ FILE: MASTER FILE

RECORD TYPE: 7 *

TO NODE LABEL

15 50

- COMMENTS, CONT.

20 COMMENTS 5

6-U

Figure 3-8. In-Line Comments

19

DISK/TAPE RECORD LAYOUT
RECORD TYPE

SYSTEM: PFA
SOFTWARE QUAL ITY

- PARAMETER 1 FILE: MASTER FILE

RECORD TYPE: 8 *

SOFTWARE QUALITY
"-" PARAMETER 2

SOFTWARE QUALITY
T PARAMETER 3 52

SOFTWARE QUALITY
_ PARAMETER 11

SOFTWARE QUALITY
SPARAMETER 4

SOFTWARE QUALITY
W0 PARAMETER 12

SOFTWARE QUALITY
SPARAMETER 5

SOFTWARE QUALITY
67 PARAMETER 13

SOFTWARE QUALITY
7 APARAMETER 614

S ESOFTWARE QUALITY
76 PARAMETER 14

SOFTWARE QUALITY
SPARAMETER 7

SOFTWARE QUALITY
SPARAMETER 8

SOFTWARE QUALITY
5 PARAMETER 9

SOFTWARE QUALITY
50 PARAMETER 10

Figure 3-9. Software Quality Information

20

DISK/TAPE RECORD LAYOUT
RECORD TYPE

SYSTEM: PFA" " ENTRY POINT NAME
--5-

FILE: MASTER FILE

RECORD TYPE: 9 *

LINK
_5 50

ENTRY POINT
DESCRIPTION,
CONT.

T5 START NODE LABEL
__2._5 6 0

ENTRY POINT
DESCRIPTION

40

5-0 I Figure 3-10. Entry Point Definition

21

40%
80 CI C

WI J C CD CN m O C 0i n c

= -n

>-- C - a- -

(n4c < a 0-- = Lc- c C

-) -c a. (I CL

O X: LA.J EnD (AC Li..
0.. La (A 9 ,i -'A30LL.J 0.) uE -. m LJ UA 0^ tt .3 Li i Q1 -cc -I0.Cwi C.C MA (Ac Q.DL -2:) LJ L C)

LAJJ
W~. 0C'.

di4. C6.-
410. 0CU LU Z

0I UL v C 0 U .0-0 a d) 4-.

>% a0 4-) 4)(
Li 0) M3 c a- u L
Ui V) 4-J 4-) C

(0Lf ci0),-
W)) 4) (D 0) 4) w) (a ' '0 % 0

(U) u -0 ul 0 - -0 - -- -
U)~~~0 0) 0) U) 11 U) U) C C0" E- -0 r= 00 00 04.,. 0" "0- 41 4.) 4-) 41 4-' 41- + * to) 4 0n +j4-. 0)0 04- 0 0 0 0 0 0. .4....4 . 41*. 0.c C-0. l-zuZ i000 U-0~

0

0 ; 0)
Li 0 00S 0 01 0 Q ~

14..

&;, t- L: 1

a' a ' 4-' a (t 4-) 0

IV 0a) Q$ - c-

22

'U 00

0.0 0.0 C
0 LU 0,-E.,,.)

wJ ~ o' a'OC W 4J C"Li .'mU (- ON 0 0 OCO
cm a m-' ,1. % 0 ON a),- c- = U u

E.' al4 C4 41 m, ,JI
< ~~C C) -D A a d

-ju Co Co CD 0 0 co 0.. --L I

0I
L 1.J P.i-. - 0 0 "

L (

LUI
2t CC 2t CC - -cc

-- C =. -
-l a- CL=

-~V Li < 0

I- = 0.0... 0. -

o. E.l--- 0., OE 0.- 0, 0. 0.J -i . *.

w W

.6-1 L, ,- 3. 'a

t7 C7] (a cr4 . 4 - . a (jL

/1 "m A. ai ,- C) CL i ,--'.. a-- .. r-

SI

.4 3 41J .,-. ., a nu - -

4A L -u E ouc - t

. 4L M a a• cm I- LU L. Lcm U UJ U a, aw11in cc

a) C. WIA CAJC C~ -06 0 -0 CC 4
0.J >a WL -0 c 4, 44 0)0.0 ELo 0 a-I O-0j Mi ti (0f AL

ccJ OL4J IMlb =0 -, Q, Ca, faI -a,-- M A>Lvi a, afl c) ai (A4.)- aV 0V .
C V wfU 0b C(¶ 0 4, 0 w C - -.
ex M- =,- a,1 E WC-a 4 L- u 4-) -u ;-C* IA b.) LU L L CLU = Ua = CLta CL ea -= L

*0E 0 C) c4 CD au*c 4. >.1 'V CO.

CixL ' u di 0 i I U O
0a ,- . ~ dl f . . ~ - -

LLi qU) lCr lb. lb. Ig..- n

0~~4- u.0 'Uj uJ 'd4)C 4J U +J U 1- aLl. J. 0. -0. -Q r-.0 4-JV IMVC '- OM. ... 0 m) E CC mC tCo~, ~ , L~4'

ox a- :3 j L 0
L li LM W2 cI

Lii U Ia Ia ' Ia a 23

Ln W

IZ I I woI

(A
t1-0

w do >

LA (A 4-. 0.) =.. >% ý

I-~> -0 cu ~ -
c - () 4A L.

w d)- 4 CA - -a. M 4

- &. m 06 C
mc ou L- 0 UC. >

c~ ~ ~ famj . _ 4
0. 4-- 4- (4

i.. > r- > si a Q A

S LO U o 41 L. 4-41 4-C43 0 . 30 C- c.k

F. f I m to3.. m. a ' c4 -0C E to
0 U CL 41 M.- 43 W33U to...4 43 (3) c L0 *' cu

C ' 43 ~3CE 4 1G. %-43 M3 C'
aw -j -6j.'b' 0. 43344 03 43L43' 0.4 a

LO .cC ON ' --- ' O 3.

O~v G3 043 .~o~o w . .- 3L Uu ~ -41
c. .41U'' IA r_3O . Lw-~ 4

IAO4 U ~ 0 ~ - - ~ '- 4 3 - ~ 4

0.. 4 0 .43 . - - - (-' %..A C faL 30 '
In~ ~~ ~ to U' 0-1 taa a u L 3 ~ ~ 3 o-~

2 4- C u'a 3 0 ' a 4 3 C ' U '(n' U

w J-

z nwi~ z zP,

-4 - .000,.- -i -jw

wZ 0. (L 7

0 .WLW0 0-

o- 0 1 to 6 6

I L mO. > .uj w ..
0w(-6O---*--,. - , -Mo-.. A L

N-a M 0 .. .- 0 rm . C, 0-~

.. JO~ 2~ L0'a-. ~ u u.0 1, '
0. 0. 0..0 O LJ rW3 0- -t

0;I 2 8 Z,

4--o~ rd U. . I ..LJ - - a -AOfW(

Cd~ ..1W .0 -. Ci ZZZ Z

Z1w.i a- * . i m 0 CL,

0 c 0 0 La 3 In .U2 0 .

d~d~irn C; >iZ-~
W~ Mir;

MIXM W-J. . Q - >- >n - o-

ZwZ~g~0u, "'~~~

zzzzzE zzz 0 -wý
u u "W~n-j w.0-Q

000 v . 25 w

DISK/TAPE RECORD LAYOUT
IDENTIFIER

SYSTEM: PFA

FILE: STANDARDS FILE

DESCRIPTION

VALUE OR
CALCULATION

WEIGHTING FACTOR

CODE/DOCUMENTAT ION
IND ICATOR

I.L.

LOWEST PERMITTED
VAL UE

STANDARD REFERENCE

HIGHEST PERMITTED
VALUE

Figure 3-12. Software Standards File Records

26

4J 4 J 4 J

0. 0. &- L- a, 4
U a (Ua q, a) 0 U t-o

cm cm UCM4-J

LLLI

0- c 2 LI 0- CDQ u

V;) =0 0x CLO L.) 0 0- 0
x~ (JO >- L~ = z 0;

:r L LU L I L
(D =- -- (= >-0 LI0 >-V .C) V) V) V) V) L- > _ - -I L0. >- = - -~- -. V Lu

>- L .I LU u ra LJ Z_
cc - Cn- LL- (MD LI.- < 0 --LU -0 - 11C L

vi LIj 7. L LJ= u

LU

Lj MV U) u a)
aJ M

404-Mf 4.0D. --0 L (AI f4.J *- = . .D =V 'a - .0
LU> = '04 -' V N4- ;I. L. ea E -

CL- (A -. 'V(mm -OU4 L. EC A *L 4' - - * C. * C

04 U-C L) C to m)~ V + - -

""M 4- 4J 0 CU4-J0J *.- a(A C eo > 41 '0. ea (LI.~0-4j 0')(MV ea. U0 40d 01-

U EV QU > L- 0) -m.fuV>W.W0. -. 0 0CL(A(ACA (A'0- . .0 (A L- (DA Ltn L.
'aLJV0aaa, 0 0. tm Gi *.L- - * U~ 44 "

>A c). m...4 41 C 0. cL a eaJ~-0 4J.C,- Ar
(4-4 -LJ0-41 - o mV 4U U .-- 0 >0 Cl c OJEuw

.u (v L>j (A 41 41 4-L 4- - C" 4
mU ' C.UJ V >C m 0) E~J0 -o u~((A 4-J0 4A .0 oe =(0 0. :3V '

4~'.-c'V4J('V CU) ea. E4- "0>0. .C
U E ~ n > 4- - '4 0 =0+ a,' L- j

a)i, (U' C 1 u) OC(U -0L L 41 Q-).i
(A 0VM-C4- 'V 0) "C C 0- M (I d 4eo4- a) *'. (3 0 0 i xAC -V . U

00 4J C. .-). -- L- c u CIOA (A (AC
04- 0~I ea -C 10 n6 fa C4JU

41. 4- U' 4-) (V . 41 , mL c ~ cu0 (A L. *) C4-) CL(cI 0) '0 Mf-C C 4- Mo 0' 'V f)a f u 0 - A3 ea 41 M0 j4-r d)i0o ~ a 0) f- .C' 4-0) .C0 .%I-" "a 00C m '0) >1 4)E CC (A 0 (A C(A (0 L.
-LJ .04. "a4. c-0~... C- (u

=. 2 (A J ..- Li. L.- r,(~0) '(A j. ... 41

-ID X 0 1 L)L

m - a - C4-J 4-.4W..)c j 0 (

C 1-

afa 0 0) 00)0 L. 4J u.- C: a4- 1-. C tA d, d)(UL
4- 0-1 4) 'V =C :3C

%A -U I 0 - -a 0 'Vo-
a, re' 0' m V 'V0. 1

SECTION 4. PROGRAM MAINTENANCE PROCEDURES

4.1 Conventions.

4.1.1 Namnin Conventions. The following conventions were used for the as-
signment of mnemonics.

a. Counters usually begin with "N" or contain "NUM".

b. The mnemonics "RL" and "RP" are used for report file line and page
count, respectively.

c. The variable "TRUE" is set to 1; "FALSE" is set to 0.

d. Mnemonics which specify input/output channel numbers end with "CHNL"
or "CHNNL".

e. Mnemonics which have to do with batch processing mode start with
"BAT"

f. Variables used in the report file interface may contain "REP".

g. Variables and subroutine names containing "STD" are used in processing
standards records.

h. Variables and subroutine names containing "MOD" are used in module
processing.

i. Variables and subroutine names containing "OUT" are used in output
processing.

J. Variables and subroutine names containing mMST" are used in master
file processing or to indicate that data come from a master file.

k. Variables and subroutine names containing "STK" or "STAK" are used for
stacks.

1. Variables and subroutine names containing "NEW" refer to a new ver-
sion.

m. Variables and subroutine names containing "OLD" refer to an old ver-
sion.

n. Variables containing "TTY" (e.g.-, TTY, TTYIN, TTYNOCR) refer to user
terminal.

o. Variables containing "ARND" or "EXT" are exit points for local control
structures.

4.1.2. Commenting Conventions. Figure 4-1 Is an example of the conventions
"- used in PFA source. In general, all comments and code for a module must be

grouped together within the source file. A description of the conventions
used within a module follows:

28

* Sýrn..l'TINE READSTD - READ STANDARDS FILE

, P!JRPA'5 •

RFADSTD READS THE STANDARDS FILE AND STORES THE INFORMATION FOR

* THE nASIC STANDARDS IN THE STANDARDS TABLE.

,CALL PEADSTD ()

* ,APIADLE LIST

ccs* c - STANDARD DESCRIPTION

G I V - EXPRESSION FOR CALCULATING SIANDARD

T)-X STANDARD LABFL AND INDEX INTO STANDARDS* TABLE
MIH, XV - MAXIMUM VALUE TO MEET STANDARD
MINV - MINIMUM VALUE TO MEED STANDARD

* SIGNIF - FLAG INDICATING WHETHER A CHANCE IN THE VALUE OF •
THIS STANDARD SIGNIFIES A CODE OR tOCUMENTATION •
C .HANGE IN THE MODULE (-C D) M

S STANDAPR - INPUT VARIABLE FOR STANDARDS FILE
S ;'rD - SEE STD DATA STRUCTURE

* STOPFC - STANDARD TABLE ENTRY *

i o rAo - STANDARDS' TABLE:
TEMP - INPUT RECORD FROM STANDARDS F!LE •

WGT - FLAG INDICATING WHETHER CURRENT STANDARD IS TO BE
REPCRTED

V. 4

, 0 - DO NOT REPORT

>0 - DO REPORT

F FILES USED.

* SIANDARD3 FILE - FILE SPECIFYING PRCGRAM STANDARDS

• CALLS LIST

.....4............... ~4

. -C ,RAD RF!ORPD AND GATHER DATA \I-I.E

* INPUT. STANDARD" IP. TEEMP ST, DESC. ST, WGT: ST, M INV: ST, MAXV: ST.
* SIV STSICNIF ST. IDX:ST.STDREC:STD

n DJIPUT N IN. TEMP ST. IDX: ST, DESC: ST, WCT ST. MINV ST. MAXV: ST, IV: ST.

* SISNIF ST, STDREC: S'D, IDX: IN. STDTAB<IDX>: STD. STDTAB: TA
SCALLS. LIST

PTFADZTD N - 0

STDTAB - TABLE(17)

PSI TEMP - STANDRD F(RETURN)
IDX = LIST(TEMP. I.'')

DESC - LIST(TEMP,.. ')
W-1T - LIST(TEMP, 3.))
MINV - LIST(TEMP, 4. 'i 'I
MAXV - LIST(TEMP, 5, 1)
(NIV - LIST(TEMP.A. ', ')
OIGNIF - LIST(TEMP,7, . 'i)
STOREC - STD(DI'SCWGT,MINV,MAXV,GIVNULL,SICNIF)

rEST FOR BASIC STANDARD. STORE INFORMATION FOR RASIC STANDARDS

* IN STANnARiS TABLE. SKIP USER-DEFINED STANDARDS.

IDX - CCNVERT(IDX, 'INTECER') F(RSI)
STDTABDCIDX:; - STDREC !(RSI)

Figure 4-1. A Sample PFA-Commented Source Program

29

a. Prologues

(1) Each module has a prologue.

(2) The prologue is delimited by asterisks. This means that the
prologue must be preceded and followed by a line consisting only of a string
of asterisks and that each line in the prologue must begin and end with an
asterisk.

(3) Every prologue contains as the first non-blank line:

TASK

SUBROUTINE <name> - <description>

LIBRARY ROUTINE

where, if the module has multiple entry points, name is the name
of the first entry point.

(4) Following item 3 is the module description:

AUTHOR:

DATE STPRTED:

DATE LAST MODIFIED:

PURPOSE: <function of module>

DESCRIPTION: <general design description>

CALL:

PARAMETER LIST: <parameters and descriptions>

USER-DEFINED DATA STRUCTURES: <structures. fields and de-
scriptions>

VARIABLE LIST: <variables and descriptions>

FILES USED: <file names and descriptions>

CALLS:

L IMITATION'S:

ERRORS:

as there are appropriate data to include.

(5) For each additional entry point the module contains, (4) above
is followed by:

30

ENTRY POINT: <name> - <description>

and again, as many of the items in (4) above as appropriate.

b. In-Line Comments

(1) All in-line comments begin with an asterisk and ire separaLed
from code by strings of asterisks.

I (2) In-line comments do not contain '

(3) The in-line comments may contain pseudo path segment
specifications. These specifications document the flow of control in a module
and are used by COMPRO, the comment processor, and STAMP to create HIPO
charts. If used, the path segment specifications have the following format
and meaning:

"(a) The specification for a path segment begins on the first
comment to be included in the segment.

S(b' The specification is the rightmost item on the comment
line.

(c) The specification is of the form:
[m-][nl,n2,...][E]

S &-where m is the optional node label for the start of the path
d 4__ segment, ni are the optional node labels to which the segment branches, and E

. indicates branch to exit. If the from node label is null, the from node label
will be assumed to be the current node count for this module. TFthe to node
labels (including E) are null, the to node label will be assumed to be the
current node count for this module 'Tus one. If this path segment is an entry

" tpoint for the module but is not the first entry point to the module, m must be
the name of the entry point.

(d) The last path specification in a module has a to node
specified.

(4) All referenced and modified variables appearing in a pseudo path
segment are listed in comments within the path segment for use by COMPRO and
STAMP. If there is no path segment specification, all referenced and modified
variables for the module are listed. Comments listing referenced or modified

V. variables have the respective formats:

INPUT: varl[:type],var2[:type3,...vari[:type],

r -... .varn[:type]

31

OUTPUT: varl [:type] ,var2[: type],...vari[:type],

... varn(:typel

where type is optional and is an abbreviation for the variable type.

In the case of SNOBOL the types are abbreviated as follows:

TYPE ABBREVIATION

String ST

Integer IN

Real Number RE

Pattern Structure PA

Array AR

Table TA

Created Name NA

Unevaluated Expression UN

Ob (ec".. C. 2e CO

Prngramme.,- lefined Data type name

External EX

Inplit IP

Output OP

Several lists may be included in one path segment.

(5) All subroutines called in a pseudo path segment are listed in
comments within the path segment for use by COMPRO and STAMP. If there is no
path segment specification, all subroutines called in the module are listed.
Comments listing the calls have the format:

CALLS: calll, call2...calli,

32

... cal in

Several lists may be included in one path segment.

4.2 Verification Procedures. Large master files should be used to test the
performance of the PFA programs. Master files should contain all possible
inputs which affect the PFA program being tested. Master files for testing
can be generated by running an encoder on a representative sample of software.
The resulting master file can then be edited to add the necessary features for
the test.

4.3 Error Conditions.

4.3.1 COMPRO. COMPRO indicates the following errors:

a. Massage: "ERR1O: ERROR PROCESSINC LINE IN. MODULE

"<line>"

This means that COMPRO has found a line in the PFA source with an un-
expected format. The message indicates an error within COMPRO, and
processing terminates.

b. Message: "ERR20: UNEXPECTED END OF FILE IN MODULE

This .,,eans that COMPRO has found -n end of file whilE reading a multi-
line list. The message indicates an error in the PFA sourcp. Process-
ing terminates.

4.3.2 STAMP AND PATCHANA. These programs display the following:

Message: "BAD MAP FOR

This means that there is a to label without a corresponding from label or
that the from or to label i-s-null for a path datum in the mas-ter file.
This results-frarTncomplete path structure generated by the encoder or
from dead code in the source code being analyzed.

4.3.3 SOFTPRO. SOFTPRO has the following error conditions:

a. Message: "STANDARD REFERENCE IN STANDARD LINE " IS NOT FOUND

This means that a standard reference in the calculation field of the
indicated line of the standards file cannot be found.

b. Message: "IN STANDARDS FILE, ERROR IN SPECIFYING CALCULATION FOR
STANDARD LINE "

This means that the calculation field of the indicated line of the
standards file is in error.

33

c. Message: "IN THE STANDARD FILE, LINE SPECIFIES A CALCULATION
FOR A BASIC STANDARD"

This means that for the indicated line in the standards file, the
standard number is between 1 and 14, indicating that it is a basic
standard, but the calculation field contradicts that by providing a
calculation.

d. Message: NIN THE STANDARDS FILE, LINE SPECIFIES A STANDARD WHICH
IS NOT BASIC BUT IT HAS NO CCEU-OLATION"

This means that for the indicated line in the standards file the
standard number is not between 1 and 14, indicating that it is not a
basic standard, but there was no calculation using basic standards
included in the calculation field.

4.4 Special Maintenance Procedures. The normal procedure for executing a
RA-SPITBOL program is to invoke the MACROSPITBOL interpreter with the com-
mand line: $ SPITBOL <filename>.SPT. To save execution time PFA uses the
MACROSPITBOL feature of having the source code preinterpreted into a SNOBOL
executable file which can then be loaded and run. (See EXIT(-1) in
MACROSPITBOL Manual.) To facilitate the use of PFA, two command procedures
are required in the user's LOGIN.COM file. The first one is a comnnand to com-
pile PFA programs: $ C*OMP :== SYSSYSTEM:SPITBOL/LOAD=PFAEDT NL:. This
command (compile) can then be invoked by typing "C" or "COMP" by the user from
command level. The command will then load and run a special PFA preprocessor
called PFAEDT which processes (creates a MACROSPITBOL program) PFA source code
and expands the "Included" files. PFAEDT then calls on the MACROSPITBOL
interperter with the processed file, which then creates the saveable
<filename>.SEX image file. The second command entry is $ PFA :== SYSSYSTEM:
SPITBOL/LOAD=PFAINI NL:. This command, once in the LOGIN.COM file, is invoked
by typing "PFA" at the command level. The command will then load and run a
program called PFAINI, which presents a menu and asks for the PFA report
program the user would like to run. PFAINI will then load and run the re-
quested program which had been created by the compile command.

The programs PFAEDT.SPT and PFAINI.SPT used in the command procedures (C
and PFA) must be compiled into loadable modules by the normal procedure out-
lined above. The rest of PFA can be compiled and run using only the C and PFA
commands once they have been installed.

4.5 Special Maintenance Programs. None required.

4.6 Listings. Volume II, Appendix E, contains all program listings.

4.7 Software Failure Report Summary. The following is a summary of the ex-
isting known software failures and deficiencies:

34

4.7.1 Overall PFA. In list processing most lists use commas as item de-
limiters. However, lists of variables may include multi-subscripted array
names which contain commas. It is suggested that percent signs be used in
place of commas as primary list delimiters and that all subroutines used in
list processing get as input the delimiter to be searched for.

4.7.2 STAMP.

a. READPATH uses start nodes to determine which subroutines are called by
a task and its entry points, respectively. However, it assumes tha. a task's
starting point will always be the first entry in the path table. This is not
always the case: i.e., OUTOUT. It is suggested that the entry points in the
structure have the same name as in the routine.

h. When outputting comments to HIPO charts, if the comment must be
truncated, STROUT either truncates after the last comma or returns a null if
there are no commas. Associated logic in OUTPATH may cause the assocated line
of input variables to be lost. It is suggested that a separate routine be
written to handle text.

4.7.3 PATCHANA.

a. If a module structure change is found, it is likely that everything
after the structure change will be flagged because the structures of the two
versions of the module will be out of synchronization. It is suggested that
the PATCHANA program be changed to apply pattern matching to the structural

Spatterns between parts of the two versions of the module being analyzed to de-
termine the exact extent of the change in structure and to restore synchron-
ization between the two versions so that additional structural changes can be
identified. A percentage should also be calculated to indicate the amount or
scope of the change.

b. PATCHANA does not recognize multiple entry points. This feature must
be added.

4.8 Future Program Improvements. The following program improvements have
been suggested but are not currently implemented.

4.8.1 Master File. In general, changes in the format of the master file will
affect all PFA programs and encoders.

a. A new record type "D" should be defined for definition of global data,
similar 'o labeled and blank commons in FORTRAN. This would provide better
data tracking between modules.

b. Establish variable use codes for the variable records (type 7 records)

as follows:

"D" - defined in an unexecutable statement

- "M[C]" - modified, may be conditional

"R[C]" - referenced, may be conditional

35

"."T[C]"- tested, may be conditional

"[LI" - loop control, suffix to above

"[U]" - undefined prior to use, suffix for above

c. A new record type "A" is needed to encude the algorithm used on the
path segment in such a way as to allow theorem provers to be used where pos-
sible.

4.8.2 STAMP.

a. Names of modules of "blank common" and "labeled common" should be
included in the module list and processed as modules.

TYPE OF MODULE NAMING CONVENTION TASK/SUBROUTINE CODE

Blank common /*/ or / / D

Named common /name/ D
Executable routine name S, T, E

Commons may or may not be listed in the structure chart but will be listed
in HIPO charts.

b. Version information should be deleted from the module list and be re-
placed with counts of subroutines calling each routine at each level of the
subroutine hierarchy.

36

APPENDIX A

TERMS AND ABBREVIATIONS

A-1

TERMS AND ABBREVIATIONS

COMPRO Comment Processor.

DEC Digital Equipment Corporation.

DECUS DEC User Society.

Encoder A program which reads the source code for the system
being analyzed and creates a master file for use by
other PFA programs.

External procedures Procedures which exist outside of the software being
analyzed, e.g., operating system utilities.

HIPO Hierarchy plus Inputs, Processing, and Outputs.

HIPO chart A rhart relating inputs and outputs to the processing
algoritrh which uses or creates them.

MACROSPITBOL A SNOEOL4 compatible interpreter for the VAX.

Master file The file which contains a representation of the
attributes of the software being analyzed.

Module A separately compilable procedure or subroutine.

Node A point of decision in execution path selection.

PATCHANA Patch Analysis Program.

Path A segment of instructions which does not contain any
branches.

PFA Program Flow Analyzer.

PFALIB PFA Library.

Program structure Graph of the sequence of all possible paths which may be
executed within a program.

Quantifiers A value which quantifies or totals some attribute on a
path.

RATFIV A structured FORTRAN translator.

A-2

TERMS AND ABBREBIATIONS (Cont'd.)

SOFTPRO Software Profile Program.

Software patch A change in source code.

Software system Consists of one or more computer programs which perform
one or more related functions.

STAMP Structure, Timing, Analysis, Modeling Program.

Standards file File which contains user-entered standards in a
prescribed format.

Structure chart Shows a subroutine call hierarchy in the form of a tree
graph.

SYSTRUCT Systen, Structure Comparison Program.

TECOM Test and Evaluation Conand.

USAEPG U.S. Army Electronic Proving Ground.

A-3

